Nullspaces yield a new family of explicit Runge–Kutta pairs

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 1/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement?

Jim Verner

PIMS & Department of Mathematics Simon Fraser University, Canada jimverner@shaw.ca http://www.math.sfu.ca/~jverner

Abstract

Recently, John Butcher developed a MAPLE code 'Test 21' to solve the order conditions directly. This code was applied to derive 13-stage pairs of orders 7 and 8 and unexpectedly, revealed the existence of some previously unknown pairs. This talk reports formulas for directly deriving such a new parametric family.

February 24, 2023

John Butcher has developed a culture of Trees

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 2/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

and over the years has made many friends

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 3/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement?

who helped him create new Runge-Kutta arrays

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 4/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

Outline

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 5/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogon NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

1 Introduction

2 Order Conditions

- Rooted Trees
- Types and Formats
- SOOCs

3 "(p,p)"-methods

4 Nullspaces

- Orthogonal Matrices
- Mutually Orthogonal NullSpaces

5 New RK pairs

- Structure of Matrix A
- Are new pairs an improvement?

Explicit Runge-Kutta pairs of methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 6/73

Introduction

- Order Conditions Rooted Trees Types and Forma SOOCs
- " (p,p)" methods
- Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

For a vector initial value problem in ordinary differential equations: $y = f(x, y), \quad y(x_0) = y_0,$

Explicit Runge-Kutta pairs of methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 7/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an For a vector initial value problem in ordinary differential equations: $f(x,y) = y(x_y) = y(y_y)$

$$\mathbf{y} = f(\mathbf{x}, \mathbf{y}), \quad \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0,$$

an s-stage explicit Runge-Kutta **pair** is defined for a step of h as,

$$Y^{[i]} = y_{n-1} + h * \sum_{j=1}^{i-1} a_{i,j} f(x_{n-1} + c_i h, Y^{[j]}), \qquad i = 1, .., s,$$

$$y_n = y_{n-1} + h * \sum_{i=1}^{s} b_i f(x_{n-1} + h, Y^{[i]}), \qquad n = 1, ..,$$

$$\widehat{y_n} = y_{n-1} + h * \sum_{i=1}^{s} \widehat{b_i} f(x_{n-1} + h, Y^{[i]}), \qquad n = 1, ..,$$

Explicit Runge-Kutta pairs of methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 8/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? For a vector initial value problem in ordinary differential equations: $f(x,y) = y(x_0) = y(y_0)$

$$\mathbf{y} = f(\mathbf{x}, \mathbf{y}), \quad \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0,$$

an s-stage explicit Runge-Kutta **pair** is defined for a step of h as,

$$Y^{[i]} = y_{n-1} + h * \sum_{j=1}^{i-1} a_{i,j} f(x_{n-1} + c_i h, Y^{[j]}), \qquad i = 1, .., s,$$

$$y_n = y_{n-1} + h * \sum_{i=1}^{s} b_i f(x_{n-1} + h, Y^{[i]}), \qquad n = 1, ...,$$

$$\hat{y_n} = y_{n-1} + h * \sum_{i=1}^{s} \hat{b_i} f(x_{n-1} + h, Y^{[i]}), \qquad n = 1, ...,$$

• where $\{b_i, \hat{b}_i, a_{i,j}, c_i\}$ are coefficients of the pair,

- y_n approximates $y(x_n)$ to order p,
- the difference y_n ŷ_n is an order p 1 estimate of the local truncation error that can be used for stepsize control.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 9/73

Introduction

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an When did this study start?

- Long ago: The Initial Value Problem (IVP)
- 1901,1905: Runge, Kutta
- 1963: Butcher: Rooted trees yield Order Conditions

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 10/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an When did this study start?

- Long ago: The Initial Value Problem (IVP)
- 1901,1905: Runge, Kutta
- 1963: Butcher: Rooted trees yield Order Conditions
- New Explicit Methods:
 - 1963-64: Butcher: methods of orders 6 and 7
 - 1967-68: Fehlberg derived pairs of orders 6 to 9
 - 1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
 - 1975: Curtis: p=10, s=18 methods.
 - 1974-78: JHV improved pairs of orders 6 to 9
 - 1978: Hairer: derived p=10, s=17 methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 11/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? When did this study start?

- Long ago: The Initial Value Problem (IVP)
- 1901,1905: Runge, Kutta
- 1963: Butcher: Rooted trees yield Order Conditions
- New Explicit Methods:
 - 1963-64: Butcher: methods of orders 6 and 7
 - 1967-68: Fehlberg derived pairs of orders 6 to 9
 - 1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
 - 1975: Curtis: p=10, s=18 methods.
 - 1974-78: JHV improved pairs of orders 6 to 9
 - 1978: Hairer: derived p=10, s=17 methods

Since these derivations, there have been many contributions to searching and finding new methods and pairs for constructing and maintaining software to solve real IVPs.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 12/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an When did this study start?

- Long ago: The Initial Value Problem (IVP)
- 1901,1905: Runge, Kutta
- 1963: Butcher: Rooted trees yield Order Conditions
- New Explicit Methods:
 - 1963-64: Butcher: methods of orders 6 and 7
 - 1967-68: Fehlberg derived pairs of orders 6 to 9
 - 1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
 - 1975: Curtis: p=10, s=18 methods.
 - 1974-78: JHV improved pairs of orders 6 to 9
 - 1978: Hairer: derived p=10, s=17 methods

What other (explicit Runge-Kutta) methods exist?

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 13/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

• This is a study to formulate some specific new pairs.

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 14/73

Introduction

- Order Conditions Rooted Trees Types and Format SOOCs
- " (p,p)" methods
- Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

- This is a study to formulate some specific new pairs.
- Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 15/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

- This is a study to formulate some specific new pairs.
- Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.
- In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge–Kutta methods.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 16/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

This is a study to formulate some specific new pairs.

- Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.
- In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge-Kutta methods.
- Some new R–K *pairs* were found on applying 'Test21'.

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 17/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

This is a study to formulate some specific new pairs.

- Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.
- In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge–Kutta methods.

Some new R–K *pairs* were found on applying 'Test21'.

- These new pairs were members of a parametric family.
- Knowledge of the structure of these new methods may yield more methods in this family.
- The structure for these new methods may lead to **other types of new methods**.
- Does this new family contain methods better than those already known?

Order Conditions are generated by Rooted Trees

Jim Verner, SFU, February 24, 2023 18/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Two similar standard order conditions are

$$\Sigma_{i,j}b_ia_{i,j}c_j^2 = 1/(1*1*3*4)$$

$$\Sigma_i b_i c_i^3 / 3 = 1/(1 * 1 * 1 * 4)/3$$

Order Conditions are generated by Rooted Trees

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 19/73

Introduction

Order Conditions Rooted Trees Types and Form: SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

Two similar standard order conditions are

$$\Sigma_{i,j}b_ia_{i,j}c_j^2 = 1/(1*1*3*4)$$

$$\Sigma_i b_i c_i^3/3 = 1/(1*1*1*4)/3$$

The difference gives a 'Singly Orthogonal Order Condition':

$$\Sigma_{i,j} \boldsymbol{b}_i (\boldsymbol{a}_{i,j} \boldsymbol{c}_j^2 - \frac{\boldsymbol{c}_i^3}{3}) = 0$$

We define "stage-order" or "subquadrature" expressions as $q^{[k]} = (\mathsf{AC}^{k-1} - \mathsf{C}^k/k),$

to find that vector **b** must be orthogonal to vector $q^{[3]}$.

Order Conditions are generated by Rooted Trees

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 20/73

Introduction

Order Conditions Rooted Trees Types and Form: SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

Two similar standard order conditions are

$$\Sigma_{i,j}b_ia_{i,j}c_j^2 = 1/(1*1*3*4)$$

$$\Sigma_i b_i c_i^3/3 = 1/(1*1*1*4)/3$$

The difference gives a 'Singly Orthogonal Order Condition':

$$\Sigma_{i,j}b_i(a_{i,j}c_j^2-\frac{c_i^3}{3})=0$$

i.e. $b.q^{[3]} = 0$, and past derivations have relied on making parts of either such order conditions components equal to zero, **but more flexibility is possible**.

There are only four types of Order Conditions

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 21/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an Order conditions can be partitioned into four types that exist:

 $\Sigma_i b_i c_i^4 = 1/5 = \int_0^1 c^4 dc$ \mathbf{V} A. Quadrature k-1 terminal nodes each connected to the root $\Sigma_{i,i,k}b_ia_{i,i}a_{i,k}c_k^3 = 1/120$ B. Linear C.C. N.H. all terminal nodes connected to the penultimate node $\bigvee \Sigma_{i,j,k} b_i c_i^2 a_{i,j} c_j a_{j,k} c_k^2 = 1/120$ C. Linear V.C. 'side' subtrees of single nodes only $\sum_{i,j,k} b_i(a_{i,j}c_i)(a_{i,k}c_k^2) = 1/36$ D. Non-Linear at least two subtrees of height two or more)

There are only four types of Order Conditions

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 22/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an Order conditions can be partitioned into four types that exist:

- A. Quadrature $\sum_{k=1}^{\infty} \sum_{i} b_i c_i^4 = 1/5 = \int_0^1 c^4 dc$ k-1 terminal nodes each connected to the root
- B. Linear C.C. N.H. $\Sigma_{i,j,k} b_i a_{i,j} a_{j,k} c_k^3 = 1/120$ all terminal nodes connected to the penultimate node
- C. Linear V.C. $\sum_{i,k} b_i c_i^2 / 2a_{i,k} c_k^2 = 1/36$ 'side' subtrees of single nodes only
- D. Non-Linear $\sum_{i,j,k} \sum_{k,j,k} \sum_{i,j,k} \sum_{k,j,k} \sum_{i,j,k} \sum_{k,j,k} \sum_{k,j,k$

This type D becomes C if $b_i = 0$ or $\sum_j a_{i,j}c_j = c_i^2/2$, i = 1..12.

There are only four types of Order Conditions

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 23/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

Order conditions can be partitioned into four types that exist:

 $\sum_{i} b_{i} c_{i}^{4} = 1/5 = \int_{0}^{1} c^{4} dc$ A. Quadrature k-1 terminal nodes each connected to the root B. Linear C.C. N.H. $\sum_{i,i,k} b_i a_{i,i} a_{i,k} c_k^3 = 1/120$ all terminal nodes connected to the penultimate node $\bigvee \Sigma_{i,i,k} b_i c_i^2 a_{i,j} c_j a_{j,k} c_k^2 = 1/120$ ■ C. Linear V.C. 'side' subtrees of single nodes only $\sum_{i,j,k} b_i(a_{i,j}c_i)(a_{i,k}c_k^2) = 1/36$ D. Non-Linear at least two subtrees of height two or more)

In general, we assume $b_i = 0$ or $q_i^{[2]} = q_i^{[3]} = 0$, i = 1..12.

Vector-Matrix format of Standard Order Conditions

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 24/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an A Vector-Matrix notation is more convenient:

A. Quadrature $Q^{[5]}=0$ \bigvee $bC^4e = 1/5$ B. Linear Constant Coefficient \downarrow $bA^2C^3e = 1/120$ C. Linear Variable Coefficient \checkmark $bC^2ACAC^2e = 1/120$ D. Non-Linear \bigvee $b(ACe).(AC^2e) = 1/36$

With retained simplifying conditions, Type D conditions collapse to type C. Hence, I will be focusing of how to solve the first three types.

Otherwise, the order conditions can be expressed using integrals:

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 25/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an If you work with order conditions, the following interpretation as recursive integration may be helpful - for example:

$$bCAC^3AC^2e = \int_{c=0}^1 c \int_{\bar{c}=0}^c \bar{c}^3 \int_{\hat{c}=0}^{\bar{c}} \hat{c}^2 d\hat{c} d\bar{c} dc.$$

Otherwise, the order conditions can be expressed using integrals:

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 26/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? If you work with order conditions, the following interpretation as recursive integration may be helpful - for example:

$$bCAC^{3}AC^{2}e = \int_{c=0}^{1} c \int_{\bar{c}=0}^{c} \bar{c}^{3} \int_{\hat{c}=0}^{\bar{c}} \hat{c}^{2}d\hat{c}d\bar{c}dc.$$

i.e. b is replaced by integration on [0,1],
each A is replaced by integration on [0, c],
each C^k is replaced by the form c̄^k.

Otherwise, the order conditions can be expressed using integrals:

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 27/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

If you work with order conditions, the following interpretation as recursive integration may be helpful - for example:

$$bCAC^{3}AC^{2}e = \int_{c=0}^{1} c \int_{\bar{c}=0}^{c} \bar{c}^{3} \int_{\hat{c}=0}^{\bar{c}} \hat{c}^{2}d\hat{c}d\bar{c}dc.$$

i.e. b is replaced by integration on [0,1],
each A is replaced by integration on [0, c],
each C^k is replaced by the form c̄^k.

Some multiples of these forms can be expressed using specific nodes as convenient.

Such expressions are utilized in proving some order conditions.

Vector-Matrix Singly Orthogonal Order Conditions

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 28/73

Introduction

Order Conditions Rooted Trees Types and Format: SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an Combining *each* Standard Order Condition with an earlier one yields a "Singly Orthogonal Order Condition" (SOOC) from which constants have been eliminated:

A. Quadrature5-4 $b(5C^4 - 4C^3)e = 0$ B. Linear Constant Coefficient $bAq^{[4]} = 0$ C. Linear Variable Coefficient $bC^2ACq^{[3]} = 0$ D. Non Linear $b(ACe.q^{[3]}) = 0$

The "subquadratures" $q^{[k]} = (AC^{k-1} - C^k/k)e$, show that SOOCs constrain coefficient expressions by orthogonality.

How many SOOC.s of each type are there?

Nullspaces yield a new family of explicit	Туре Order р	A	В	С	D	Np	
Runge–Kutta pairs	(1)	(1)			=	(1)	$(\Sigma b_i = 1)$
	2	1			=	1Σ	$\sum b_i(1-2c_i)=0$
	3	1	1		=	2	
	4	1	2	1	=	4	
	5	1	3	4	1 =	9	
	6	1	4	11	4 =	20	
Rooted Trees Types and Formats SOOCs	7	1	5	26	16 =	48	
	8	1	6	57	51 =	115	
	Totals	8	21	99	72 =	200	-1
	All but (1) c	an be	expres	ssed a	s a S.O. (Order (Condition.

Mutually Orthogo NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

How many SOOC.s of each type are there?

Nullspaces yield a new family of	Type Order p	A	В	С	D		Np	
explicit Runge–Kutta pairs	(1)	(1)				=	(1)	$(\Sigma b_i = 1)$
	2	1				=	1 2	$\Sigma b_i(1-2c_i)=0$
	3	1	1			=	2	
	4	1	2	1		=	4	
	5	1	3	4	1	=	9	
	6	1	4	11	4	=	20	
Rooted Trees Types and Formats SOOCs	7	1	5	26	16	=	48	
	8	1	6	57	51	=	115	
	Totals	8	21	99	72	=	200	-1

Moreover, by suppressing (1) and 2, $(\Sigma N_p) - 2$ order conditions can be written as SOOCs with neither b_1 nor c_1 present.

How many SOOC.s of each type are there?

Nullspaces yield a new family of explicit Runge–Kutta pairs	Type Order p (1)	A (1)	В	С	D	=	N _p (1)	$(\Sigma b_i = 1)$	
Jim Verner,	2	1				=	1	$\Sigma b_i(1-2c_i)=0$	
SFU, February 24, 2023	3	1	1			=	2		
31/73	4	1	2	1		=	4		
Introduction	5	1	3	4	1	=	9		
Order Conditions	6	1	4	11	4	=	20		
Rooted Trees Types and Formats SOOCs	7	1	5	26	16	=	48		
" (p,p)" - methods	8	1	6	57	51	=	115		
Nullspaces	 Totals	8	21	99	72	=	200	-1	
Orthogonal Matrices Mutually Orthogonal NullSpaces	· · ·	For (13,7-8) methods, we have seen that $q_i^{[k]} = 0$, $k = 2,3$ or $b_i = 0$ otherwise imply conditions D collapse to conditions C.							
New RK pairs	$D_{I} = 0$ other	W15C 11	iipiy C	ununu			iupsc	co conditions C.	

Next, we show how conditions A and B are satisfied.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 32/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

"(p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for more general problems.)

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 33/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for more general problems.)

(a) For p distinct nodes c_i , there is a unique solution of

 $\Sigma_{i=1}^{p} b_{i} c_{i}^{k-1} = \frac{1}{k}, \qquad k = 1, .., p.$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 34/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for more general problems.)

(a) For p distinct nodes c_i , there is a unique solution of

$$\Sigma^{\mathsf{p}}_{\mathsf{i}=1}\mathsf{b}_{\mathsf{i}}\mathsf{c}^{\mathsf{k}-1}_{\mathsf{i}} = rac{1}{\mathsf{k}}, \qquad k=1,..,\mathsf{p}$$

(b) More generally, for *p* distinct nodes c_i , $L_{p+2-k,i} = bA_i^{k-1}$, i = p - k + 1..1, k = 1, ..., p, uniquely satisfy $\sum_{i=1}^{p+1-k} L_{p+2-k,i} c_i^{j-1} = \frac{(k-j)!}{k!}$, j = 1, ..., p - k.

Coefficients $a_{i,j}$ are obtained using a back-substitution with $L_{p+2-i,j}$.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 35/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for more general problems.)

(a) For p distinct nodes c_i , there is a unique solution of

$$\Sigma_{i=1}^{\mathsf{p}}\mathsf{b}_{\mathsf{i}}\mathsf{c}_{\mathsf{i}}^{\mathsf{k}-1}=rac{1}{\mathsf{k}},\qquad k=1,..,\mathsf{p}$$

(b) More generally, for *p* distinct nodes c_i , $L_{p+2-k,i} = bA_i^{k-1}$, i = p - k + 1..1, k = 1, ..., p, uniquely satisfy $\sum_{i=1}^{p+1-k} L_{p+2-k,i} c_i^{j-1} = \frac{(k-j)!}{k!}$, j = 1, ..., p - k.

Coefficients $a_{i,j}$ are obtained using a back-substitution with $L_{p+2-i,j}$. (a) and (b) satisfy all conditions of type A and B.

Back-substitution to get $a_{i,j}$

Cp

b1

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, Februar 24, 2023 36/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

 $L_{i,i}$ form a triangular array: C1 $L_{2.1}$ C2 L = $c_p - 1 \mid L_{p-1,1} \quad L_{p-1,2} \quad \dots \quad L_{p-1,p-2}$ $c_s \mid L_{p,1} \quad L_{p,2} \quad \dots \quad L_{p,p-2} \quad L_{p,p-1}$ $L_{p+1,1}$ $L_{p+1,2}$... $L_{p+1,p-2}$ $L_{p+1,p-1}$ $L_{p+1,p}$ and observing $b_i = L_{p+1,i}$, $a_{p,i} = (L_{p,i} - \Sigma b_i a_{i,i})/b_p$, ... we substitute up the back diagonals of L to get c_1 **C**₂ $a_{2,1}$... $c_{p} - 1$ $a_{p-1,1}$ $a_{p-1,2}$... $a_{p-1,p-2}$

 $a_{p,1}$ $a_{p,2}$ \dots $a_{p,p-2}$ $a_{p,p-1}$

.. b_{p-2}

 b_{n-1}

bp

 b_2

Detail on this back-substitution:

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 37/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogon NullSpaces

New RK pairs

Are new pairs an improvement?

In particular, with $b_p = L_{p+1,p}$ and $L_{q,q-1}$, we first "back-compute" with $L_{q,q-1}$ from the lower-right corner: C1 $L_{2,1}$ c_2 to get $a_{q,q-1} = (L_{q,q-1})/L_{q+1,q}, q = p, ..., 1,$ 11 C_1 | a_{2,1} C_2 C_{p-1} $a_{p-1,p-2}$ Cp $a_{p,p-1}$... bn •••

Next diagonal of back-substitution:

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 38/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogon: NullSpaces

New RK pairs

Are new pairs an

Next, with $L_{q,q-2}$, we back-compute up the next diagonal: C_1 $L_{2,1}$ C_2 $L_{p-1,p-3}$ $L_{p-1,p-2}$ $L_{p-1,1}$... C_{p-1} $L_{p,1}$ $L_{p,2}$... $\frac{L_{p,p-2} \quad L_{p,p-1}}{L_{p+1,p-2} \quad L_{p+1,p-1} \quad L_{p+1,p}}$ Cp .. $L_{p+1,1}$ to get $a_{q,q-2} = (L_{q,q-1} - L_{q+1,q-1} * a_{q-1,q-2})/L_{q+1,q}, \ q = p - 1, .., 1,$ C1 **C**₂ *a*_{2,1} .. $a_{p-1,p-3} a_{p-1,p-2}$ C_{p-1} C_p $a_{p,p-2}$ $a_{p,p-1}$. •••

Next diagonal of back-substitution:

Next, with $L_{q,q-2}$, we back-compute up the next diagonal: Nullspaces yield a new C_1 family of explicit $L_{2,1}$ C_2 Runge-Kutta pairs $L_{p-1,1}$.. $L_{p-1,p-3}$ $L_{p-1,p-2}$ C_{p-1} Cp to get $\mid L_{p+1,1}$ $a_{q,q-2} = (L_{q,q-1} - L_{q+1,q-1} * a_{q-1,q-2})/L_{q+1,q}, \ q = p - 1, .., 1,$ C1 C2 $a_{2,1}$ "(p.p)"methods and so on . $\begin{array}{ccc} a_{p-1,p-3} & a_{p-1,p-2} \\ a_{p,p-2} & a_{p,p-1} \end{array}$ c_{p-1} Cp b_{n-1} b_n

This gives a (p,p)-method for N.H. linear C.C. IVPs.

Here is an example of a restricted (6,6) method

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 40/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an This is a 6-stage method of order 6 for N.H. linear C.C. IVPs:

0 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 <u>3</u> 5 $\frac{79}{125}$ $\frac{28}{25}$ $\frac{14}{125}$ $\frac{3}{4}$ $\frac{125}{224}$ $\frac{15}{28}$ $\frac{3}{8}$ $\frac{1}{32}$ $\frac{4}{7}$ 36 $\frac{18}{7}$ 125 $\frac{8}{7}$ 1 49 49 7 16 $\frac{2}{15}$ $\frac{16}{45}$ $\frac{7}{90}$ 0 $\overline{90}$ 45

Here is an example of a restricted (6,6) method

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 41/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

"(p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an improvement?

This is a 6-stage method of order 6 for N.H. linear C.C. IVPs:

0 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 $\frac{3}{5}$ 79 125 $\frac{28}{25}$ $\frac{14}{125}$ $\frac{3}{4}$ $\frac{15}{28}$ $\frac{3}{8}$ $\frac{125}{224}$ $\frac{1}{32}$ $\frac{18}{7}$ $\frac{4}{7}$ $\frac{36}{49}$ 125 87 1 49 7 16 $\frac{2}{15}$ $\frac{16}{45}$ 7 0 $\frac{1}{90}$ 45 $\frac{1}{90}$

To implement this method with stepsize control, it is possible to derive an embedded method of order 5 with one more stage.

Let's turn now to Nullspaces: $\beta_i = \text{Left Nullspaces}$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 42/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices

Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

Definition

For each *i*, we define β_i to be a matrix of *s* columns whose rows are left parts of SOOCs of products up to *i* coefficients.

 β_i may contain **b** and other rows as appropriate.

Let's turn now to Nullspaces: $\beta_i = \text{Left Nullspaces}$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 43/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices

Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

Definition

For each *i*, we define β_i to be a matrix of *s* columns whose rows are left parts of SOOCs of products up to *i* coefficients.

 β_i may contain b and other rows as appropriate. One possible choice for β_4 is,

$$\hat{\beta}_{4} = \begin{bmatrix} b \\ bC \\ bCC \\ bCCC \\ bAA \\ bAAA \end{bmatrix}$$

but this matrix could contain more rows such as bCCA.

Let's turn now to Nullspaces: $\beta_i = \text{Left Nullspaces}$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 44/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices

Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

Definition

For each *i*, we define β_i to be a matrix of *s* columns whose rows are left parts of SOOCs of products up to *i* coefficients.

 β_i may contain b and other rows as appropriate. One possible choice for β_4 is,

$$\hat{\beta}_4 = \begin{bmatrix} b \\ bC \\ bCC \\ bCCC \\ bAA \\ bAAA \end{bmatrix}$$

but this matrix could contain more rows such as bCCA. We might use $\overline{\beta}_i$ to designate a maximal number of different rows.

$\alpha_j = \mathsf{Right} \; \mathsf{Nullspaces}$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 45/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices

Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

Definition

Analogously, for each j, we define α_j to be a matrix of s rows whose columns are right parts of SOOCs of products up to j coefficients,

and we use $\bar{\alpha}_j$ to designate a maximal number of different columns.

 α_j will not contain $\mathbf{e} = [1, ..., 1]^t$, but could contain $(I - 2C)\mathbf{e}$ and for j > 1, $(2C - 3C^2)\mathbf{e}$ and/or $\mathbf{q}^{[2]}$.

$\alpha_j = \mathsf{Right} \; \mathsf{Nullspaces}$

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 46/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices

Mutually Orthogon: NullSpaces

New RK pairs

Are new pairs an mprovement?

Definition

Analogously, for each j, we define α_j to be a matrix of s rows whose columns are right parts of SOOCs of products up to j coefficients,

and we use $\bar{\alpha}_j$ to designate a maximal number of different columns.

 α_j will not contain $\mathbf{e} = [1, ..., 1]^t$, but could contain $(I - 2C)\mathbf{e}$ and for j > 1, $(2C - 3C^2)\mathbf{e}$ and/or $\mathbf{q}^{[2]}$.

We'll see an example of α_2 soon. An example of α_3 is

 $\hat{\alpha}_3 = [(2\mathsf{C} - 3\mathsf{C}^2)\mathsf{e}, \mathsf{q}^{[2]}, (3\mathsf{C}^2 - 4\mathsf{C}^3)\mathsf{e}, \mathsf{Aq}^{[2]}, \mathsf{q}^{[3]}].$

We observe now that any matrices β_i and α_j are mutually orthogonal whenever $1 < i + j \le p$. Hence, each contains vectors in the Nullspace of the other.

The Nullspace Theorem

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 47/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an From these definitions, we have the following:

Theorem 2: For an s-stage method of order p, it is necessary that

 $\beta_i \cdot \alpha_j = 0, \quad 1 < i + j \le p.$

To derive methods, we might try to characterize coefficients of a method that possesses such orthogonality properties. To this end, I have studied the orthogonality properties of some new methods found using Test21. Eventually, I found that matrix A of such methods has a very special two-parameter partitioning.

Nullspaces for low order Runge-Kutta methods

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 48/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matric

Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A

As an example, consider three-stage methods of general order three: $1 \quad \widetilde{O}^{[1]} \quad \nabla^3 \quad l = 1$

1.
$$Q^{[1]} = \sum_{i=1}^{3} b_i - 1$$
 = 0
2. $\widetilde{Q}^{[1]} - 2\widetilde{Q}^{[2]} = \sum_{i=1}^{3} b_i (1 - 2c_i)$ = 0
3. $2\widetilde{Q}^{[2]} - 3\widetilde{Q}^{[3]} = [b_2 \ b_3] \begin{bmatrix} c_2(2 - 3c_2) \\ c_3(2 - 3c_3) \end{bmatrix}$ = 0
4. $b.\widetilde{q}^{[2]} = 0$

Four solutions exist (see Butcher, 2021, p. 63)

Nullspaces for low order Runge-Kutta methods

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 49/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Are new pairs an

As an example, consider three-stage methods of general order three:

1.
$$\widetilde{Q}^{[1]} = \sum_{i=1}^{3} b_i - 1 = 0$$

2. $\widetilde{Q}^{[1]} - 2\widetilde{Q}^{[2]} = \sum_{i=1}^{3} b_i (1 - 2c_i) = 0$
3. $2\widetilde{Q}^{[2]} - 3\widetilde{Q}^{[3]} = [b_2 \ b_3] \begin{bmatrix} c_2(2 - 3c_2) \\ c_3(2 - 3c_3) \end{bmatrix} = 0$
4. $b.\widetilde{q}^{[2]} = 0$

Four solutions exist (see Butcher, 2021, p. 63)

We observe that $\beta_1 = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \text{ and } \alpha_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 - 2c_2 & c_2(2 - 3c_2) & q_2^{[2]} \\ 1 - 3c_3 & c_3(2 - 3c_3) & q_3^{[2]} \end{bmatrix};$

these are orthogonal and $b \neq 0$, so that α_2 has rank 2. Hence, α_2 contains a row or column of zeros, or else has linear dependence, and this leads to the four solutions that exist.

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 50/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

- The 12-stage method of order 8 is derived first:
- For this, split an (8,8) method for N.H. C.C. linear problems after column 1, by moving values L_{p+2-k,j}, j = 2..8 to L_{s+2-k,j}, j = 6..s for s = 12, and then insert new values L_{s+2-k,j} = 0 (i.e.b_j = L_{13,j} = 0, bA_j = L_{12,j} = 0, ... j = 2, 3, 4, 5.)

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 51/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

- The 12-stage method of order 8 is derived first:
- For this, split an (8,8) method for N.H. C.C. linear problems after column 1, by moving values L_{p+2-k,j}, j = 2..8 to L_{s+2-k,j}, j = 6..s for s = 12, and then insert new values L_{s+2-k,j} = 0 (i.e.b_j = L_{13,j} = 0, bA_j = L_{12,j} = 0, ... j = 2, 3, 4, 5.)
- On stages 2..9, impose stage-order conditions q^[k] = 0, and additional constraints on nodes and coefficients so that remaining conditions of type C are satisfied.
- Assign b_i = L_{13,i}, i = 1..12, and after computing coefficients from stages 2 to 9, use a back substitution algorithm on L_{s+2-k,j} to compute a_{i,j}, j=i-1..1, i=12,11,10.

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 52/73

Introduction

- Order Conditions Rooted Trees Types and Format SOOCs
- " (p,p)" methods
- Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

- The 12-stage method of order 8 is derived first:
- For this, split an (8,8) method for N.H. C.C. linear problems after column 1, by moving values L_{p+2-k,j}, j = 2..8 to L_{s+2-k,j}, j = 6..s for s = 12, and then insert new values L_{s+2-k,j} = 0 (i.e.b_j = L_{13,j} = 0, bA_j = L_{12,j} = 0, ... j = 2, 3, 4, 5.)
- On stages 2..9, impose stage-order conditions q^[k] = 0, and additional constraints on nodes and coefficients so that remaining conditions of type C are satisfied.
- Assign b_i = L_{13,i}, i = 1..12, and after computing coefficients from stages 2 to 9, use a back substitution algorithm on L_{s+2-k,j} to compute a_{i,j}, j=i-1..1, i=12,11,10.
- Then, the embedded method of order 7 is obtained from similar values L_{i,j} using another back-substitution.

Properties of the New Methods

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 53/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an

On computation with some new methods of order 8, I found

- $\overline{\beta}_4$ is 18 × 12, has four columns of zeros, and rank = 6.
- **\bar{\beta}_4** is spanned by the rows of $\hat{\beta}_4$. (Linear independence is needed.)

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 54/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an On computation with some new methods of order 8, I found

Properties of the New Methods

- $\overline{\beta}_4$ is 18 × 12, has four columns of zeros, and rank = 6.
- **\bar{\beta}_4** is spanned by the rows of $\hat{\beta}_4$. (Linear independence is needed.)
- $P_4(C) = I 20C + 90C^2 140C^3 + 70C^4$ and $q^{[4]}$ are Nullvectors of $\overline{\beta}_4$. Hence, Nullspace $(\overline{\beta}_4)$ is spanned by $\{e_i, i = 2..5, P_4(C), q^{[4]}\}.$
- If $c_6 = 1/2$, then Rank (Columns 6 to 12 of $\overline{\beta}_4$)=5, and $q^{[4]}$ is a Nullvector of this submatrix.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 55/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an On computation with some new methods of order 8, I found

Properties of the New Methods

- $\overline{\beta}_4$ is 18 × 12, has four columns of zeros, and rank = 6.
- $\overline{\beta}_4$ is spanned by the rows of $\hat{\beta}_4$. (Linear independence is needed.)
- $P_4(C) = I 20C + 90C^2 140C^3 + 70C^4$ and $q^{[4]}$ are Nullvectors of $\overline{\beta}_4$. Hence, Nullspace $(\overline{\beta}_4)$ is spanned by $\{e_i, i = 2..5, P_4(C), q^{[4]}\}.$
- If $c_6 = 1/2$, then Rank (Columns 6 to 12 of $\overline{\beta}_4$)=5, and $q^{[4]}$ is a Nullvector of this submatrix.
- **Rank of** $\alpha_4 = 5$. (I expected this rank to be six.)
- Non-trivial columns of α_4 are $P_4(C)$ and $q^{[4]}$.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 56/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? On computation with some new methods of order 8, I found

Properties of the New Methods

- $\overline{\beta}_4$ is 18 × 12, has four columns of zeros, and rank = 6.
- β₄ is spanned by the rows of β₄. (Linear independence is needed.)
- P₄(C) = I 20C + 90C² 140C³ + 70C⁴ and q^[4] are Nullvectors of β
 ₄. Hence, Nullspace (β
 ₄) is spanned by {e_i, i = 2..5, P₄(C), q^[4]}.
- If $c_6 = 1/2$, then Rank (Columns 6 to 12 of $\overline{\beta}_4$)=5, and $q^{[4]}$ is a Nullvector of this submatrix.
- **Rank of** $\alpha_4 = 5$. (I expected this rank to be six.)
- Non-trivial columns of α_4 are $P_4(C)$ and $q^{[4]}$.

Observe that $q^{[4]} = 0$ used in known (12,8) methods is relaxed so that lhis vector lies in the Nullspace of $\overline{\beta}_4$.

Outline of New (12,8) Methods

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 57/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogon: NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement? Almost Theorem 3: Compute for a 12-stage method:

1 12 nodes with $c_1, c_6, ..., c_{12}$ distinct confined by

- $c_{3} = 2c_{4}/3, \quad c_{5} = (4c_{4} 3c_{6})/(c_{6}(6c_{4} 4c_{6})), \text{ and for} \\ \pi(c) = c(c c_{6})(c c_{7})(c c_{8}), c_{9} \text{ is chosen so that} \\ \left[\int_{0}^{1} \pi(c) \frac{(c 1)^{2}}{2!} dc\right] \left[\int_{0}^{1} \pi(c)(c c_{9}) \frac{(c 1)^{2}}{2!} dc\right] \\ = \left[\int_{0}^{1} \pi(c) \frac{(c 1)^{3}}{3!} dc\right] \left[\int_{0}^{1} \pi(c)(c c_{9}) \frac{(c 1)}{1!} dc\right].$
- 2 Choose stages 2 to 9 so that $q_i^{[k]} = 0$, k = 1, 2, 3.
- **3** Constrain stage 9 so that $\sum_i b_i c_i^2 a_{i,j} = 0, j = 4, 5.$
- **4** Choose remaining parameters so $\overline{\beta}_4$ is orthogonal to $q^{[4]}$.
- **5** $L_{i,j}$ (with $L_{i,j} = 0$, j = 2..5) and back-substitution, for the weights b_i and stages 12 to 10.

Then, the method has order 8.

Partial proof

Proof.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 58/73

Introduction

Order Conditions Rooted Trees Types and Formats SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice: Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A Are new pairs an improvement?

Conditions A and B follow from $q^{[k]}$, k = 1, 2, 3, and $L_{i,j}$. Also, values for $q_i^{[k]}$ force Conditions D to collapse to Conditions C. To establish Conditions C, formulas among A, C, b are used:

- $L_{i,j}$ with i = 13, 12 imply bA = b(I C)
- post-multiplication of bA-b(I-C) by A,C,AA,CC,AC,CA
 bCCA * q^[4] = 0

These imply bAC, bCA, bCAA, bACC lie in the rowspace of $\hat{\beta}_4$; bAAC, bCAC, bACA, added to linear combinations of C^k , k = 0..4 can be shown to be orthogonal to $q^{[4]}$ by direct computation. These imply most of Conditions C hold.

This will leave one arbitrary coefficient in row 8 of A (selected as $a_{8,7}$). As well, under further constraints, $a_{7,6}$ is arbitrary.

Algorithm for Known (12,8) methods

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 59/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

• Stage 2: $q_2^{[1]} = 0 \implies a_{2,1} = c_2.$
• Stage 3: $q_3^{[1]} = q_3^{[2]} = 0.$
• Stage 4: $a_{4,2} = 0, \ q_4^{[k]} = 0, \ k = 1, 2, 3.$
• Stage 5: $a_{5,2} = 0, q_5^{[k]} = 0, k = 1, 2, 3.$
• Stage 6: $a_{6,2} = a_{6,3} = 0, q_6^{[k]} = 0, k = 1, 2, 3, 4.$
• Stage 7: $a_{7,2} = a_{7,3} = 0, q_7^{[k]} = 0, k = 1, 2, 3, 4.$
Stage 8: $a_{8,2} = a_{8,3} = 0, a_{8,4}, q_8^{[k]} = 0, k = 1, 2, 3, 4.$
• Stage 9: $a_{9,2} = a_{9,3} := 0, q_9^{[k]} = 0, k = 1, 2, 3, 4.$
$L_{13,10}(c_{10}-c_{12})(c_{10}-c_{11})\Sigma_{j=k+1}^9L_{11,j}a_{j,k}$
$-L_{11,10}\Sigma_{j=k+1}^9L_{13,j}(c_j-c_{12})(c_j-c_{11})a_{j,k}=0, k=4,5.$
• Stages 1210 and b_i : Observe $b_i = L_{13,i}$, $i = 112$, and
use back-substitution on $L_{14-k,i}$, $k = 24$, $i = 13 - k,, 1$
to get $a_{14-k,i}$, $k = 24$, $i = 13 - k1$.

Algorithm for Known (12,8) methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 60/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an improvement?

Stage 2:	$q_2^{[1]} = 0 \implies$	$a_{2,1} = c_2.$	SO=1
----------	--------------------------	------------------	------

- Stage 3: $q_3^{[1]} = q_3^{[2]} = 0.$ SO=2
- Stage 4: $a_{4,2} = 0$, $q_4^{[k]} = 0$, k = 1, 2, 3. SO=3
- Stage 5: $a_{5,2} = 0, q_5^{[k]} = 0, k = 1, 2, 3.$ SO=3
- Stage 6: $a_{6,2} = a_{6,3} = 0, q_6^{[k]} = 0, k = 1, 2, 3, 4.$ SO=4
- Stage 7: $a_{7,2} = a_{7,3} = 0, q_7^{\lfloor k \rfloor} = 0, k = 1, 2, 3, 4.$ SO=4
- Stage 8: $a_{8,2} = a_{8,3} = 0, a_{8,4}, q_8^{[k]} = 0, k = 1, 2, 3, 4.$ SO=4
- Stage 9: $a_{9,2} = a_{9,3} := 0, q_9^{[k]} = 0, k = 1, 2, 3, 4.$ SO=4 $L_{13,10}(c_{10} - c_{12})(c_{10} - c_{11})\Sigma_{j=k+1}^9 L_{11,j}a_{j,k}$ $-L_{11,10}\Sigma_{i=k+1}^9 L_{13,j}(c_j - c_{12})(c_j - c_{11})a_{j,k} = 0, k = 4, 5.$
- Stages 12..10 and b_i : Observe $b_i = L_{13,i}$, i = 1..12, and use back-substitution on $L_{14-k,i}$, k = 2..4, i = 13 k, .., 1 to get $a_{14-k,i}$, k = 2..4, i = 13 k..1.

Algorithm for New (12,8) methods - reduce SO

SO=1

• Stage 2: $q_2^{[1]} = 0 \implies a_{2,1} = c_2$.

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 61/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

	30-1
• Stage 3: $q_3^{[1]} = q_3^{[2]} = 0.$	SO=2
• Stage 4: $a_{4,2} = 0, \ q_4^{[k]} = 0, \ k = 1, 2, 3.$	SO=3
• Stage 5: $a_{5,2} = 0, q_5^{[k]} = 0, k = 1, 2, 3.$	SO=3
Stage 6: $a_{6,2} = a_{6,3} = 0, q_6^{[k]} = 0, k = 1, 2, 3, 4.$	SO=4
• Stage 7: $a_{7,2} = a_{7,3} = 0, a_{7,6}, q_7^{[k]} = 0, k = 1, 2, 3$	>SO=3
• Stage 8: $a_{8,2} = a_{8,3} = 0, a_{8,7}, q_8^{[k]} = 0, k = 1, 2, 3$	>SO=3
Stage 9: $a_{9,2} = a_{9,3} := 0, q_9^{[k]} = 0, k = 1, 2, 3$	>SO=3
$L_{13,10}(c_{10}-c_{12})(c_{10}-c_{11})\Sigma_{j=k+1}^{9}L_{11,j}a_{j,k}$	
$-L_{11,10}\Sigma_{j=k+1}^9L_{13,j}(c_j-c_{12})(c_j-c_{11})a_{j,k}=0,$	x = 4, 5.
• Stages 1210 and b_i : Observe $b_i = L_{13,i}, i = 11$	
use back-substitution on $L_{14-k,i}$, $k = 24$, $i = 13$	
to get $a_{14-k,i}$, $k = 24$, $i = 13 - k1$.	
But to get order 8 more is needed to replace $q^{[4]}$	=0 .

Structure of New Pairs

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 62/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs Structure of Matrix A

Are new pairs an

Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_6 = 1/2$, and any other value of $a_{7,6} = \widehat{a_{76}}$, and possibly a different value of $a_{8,7} = \widehat{a_{87}}$, define four vectors by

- R1 is the solution of $a_{7,2} = a_{7,3} = 0$, $a_{7,6} = \widehat{a_{76}}$, $q_7^{[k]} = 0$, k = 1, 2, 3.
- V1 is the solution of $V1_7 = 1$, and $\hat{\beta}_4$. V1 = 0.

Structure of New Pairs

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 63/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs Structure of Matrix A

Are new pairs an

Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_6 = 1/2$, and any other value of $a_{7,6} = \widehat{a_{76}}$, and possibly a different value of $a_{8,7} = \widehat{a_{87}}$, define four vectors by

- R1 is the solution of $a_{7,2} = a_{7,3} = 0$, $a_{7,6} = \widehat{a_{76}}$, $q_7^{[k]} = 0$, k = 1, 2, 3.
- V1 is the solution of $V1_7 = 1$, and $\hat{\beta}_4.V1 = 0$.
- **R**2 is the solution of $a_{8,2} = a_{8,3} = 0$, $a_{8,7} = \widehat{a_{87}}$, $q_8^{[k]} = 0$, k = 1, 2, 3, $q_8^{[4]} = V \mathbf{1}_8 * q_7^{[4]} / V \mathbf{1}_7$.
- V2 is the solution of $V2_8 = 1$, and $\hat{\beta}_3 V2 = 0$.

Structure of New Pairs

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 64/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

Structure of Matrix A

Are new pairs an mprovement? Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_6 = 1/2$, and any other value of $a_{7,6} = \widehat{a_{76}}$, and possibly a different value of $a_{8,7} = \widehat{a_{87}}$, define four vectors by

- R1 is the solution of $a_{7,2} = a_{7,3} = 0$, $a_{7,6} = \widehat{a_{76}}$, $q_7^{[k]} = 0$, k = 1, 2, 3.
- V1 is the solution of $V1_7 = 1$, and $\hat{\beta}_4.V1 = 0$.
- **R**2 is the solution of $a_{8,2} = a_{8,3} = 0$, $a_{8,7} = \widehat{a_{87}}$, $q_8^{[k]} = 0$, k = 1, 2, 3, $q_8^{[4]} = V \mathbf{1}_8 * q_7^{[4]} / V \mathbf{1}_7$.

• V2 is the solution of $V2_8 = 1$, and $\hat{\beta}_3 V2 = 0$.

Then for each $\widehat{a_{76}}$ and $\widehat{a_{87}}$, and

 $\hat{A} = A + V1.R1\widehat{a_{76}} + V2.R2\widehat{a_{87}},$

(*Vi.Ri is an outer product*) {b, \hat{b} , \hat{A} , c} yields a new (13,7-8) pair.

Structure of New Pairs (Continued)

Nullspaces yield a new family of explicit Runge–Kutta pairs

Proof.

Jim Verner, SFU, February 24, 2023 65/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs Structure of Matrix A

Are new pairs an

For $c_6 = 1/2$, the matrix for V1 has rank 5, so V1 is a right Nullvector of $\overline{\beta}_4$. Also, R1 is a left Nullvector of $\overline{\alpha}_4$. The matrix for V2 has rank 4, and so V2 is a right Nullvector of $\overline{\beta}_3$. As well, R2 is a left Nullvector of $\overline{\alpha}_3$. These seem sufficient to prove that coefficients $\{b, bh, \hat{A}, c\}$ yield a (13,7-8) pair.

Structure of New Pairs (Continued)

Nullspaces yield a new family of explicit Runge–Kutta pairs

Proof.

Jim Verner, SFU, February 24, 2023 66/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs Structure of Matrix A

Are new pairs an

For $c_6 = 1/2$, the matrix for V1 has rank 5, so V1 is a right Nullvector of $\overline{\beta}_4$. Also, R1 is a left Nullvector of $\overline{\alpha}_4$. The matrix for V2 has rank 4, and so V2 is a right Nullvector of $\overline{\beta}_3$. As well, R2 is a left Nullvector of $\overline{\alpha}_3$. These seem sufficient to prove that coefficients $\{b, bh, \hat{A}, c\}$ yield a (13,7-8) pair.

For each traditional (13,7-8) pair with $c_6 = 1/2$ and a value of $a_{8,7}$, this yields a new family of such pairs in the parameter $a_{7,6}$. While we have exchanged the freedom to choose an arbitrary value for c_6 to make $a_{7,6}$ a parameter, we have derived a new family of pairs.

Structure of New Pairs (Continued)

Nullspaces yield a new family of explicit Runge–Kutta pairs

Proof.

Jim Verner, SFU, February 24, 2023 67/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs Structure of Matrix A

Are new pairs an

For $c_6 = 1/2$, the matrix for V1 has rank 5, so V1 is a right Nullvector of $\overline{\beta}_4$. Also, R1 is a left Nullvector of $\overline{\alpha}_4$. The matrix for V2 has rank 4, and so V2 is a right Nullvector of $\overline{\beta}_3$. As well, R2 is a left Nullvector of $\overline{\alpha}_3$. These seem sufficient to prove that coefficients {*b*, *bh*, \hat{A} , *c*} yield a (13,7-8) pair.

For each traditional (13,7-8) pair with $c_6 = 1/2$ and a value of $a_{8,7}$, this yields a new family of such pairs in the parameter $a_{7,6}$. While we have exchanged the freedom to choose an arbitrary value for c_6 to make $a_{7,6}$ a parameter, we have derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for the traditional pairs. When $c_6 = 1/2$, I have used this code to optimize over the range of arbitrary nodes, $a_{7,6}$ and $a_{8,7}$.

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 68/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an improvement?

Criteria accepted for determining good pairs usually requires that the 2-norm of the Local Truncation Error is small for the propagating method.

Pair	Nodes	LTE_2	D	Stab.
<i>EE – JHV</i> (1978)	0, 1/4, 1/12	3.82 <i>E</i> - 05	5.98	(-5.07, 0]
$\mathit{Fam}-\mathit{JHV}(1979)$	0, 2/27, 1/9	9.82e - 06	15.64	(-5.00, 0]
HNW(DP)(1991)	0, .158, .237	2.24 <i>E</i> - 06	43.48	(-5.49, 0]
<i>SS</i> (1993)	0, 19/250, 1/10	1.08E - 06	27.30	(-5.68, 0]
MAPLE(2000)	0, .054, .102	1.55 <i>E</i> - 06	20.18	(-5.84, 0]
<i>Eff</i> . – <i>JHV</i> (2010)	0,1/20,341/3200	2.82 <i>E</i> - 07	123.37	(-5.86,0]

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 69/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

Criteria accepted for determining good pairs usually requires that the 2-norm of the Local Truncation Error is small for the propagating method.

Pair	Nodes	LTE_2	D	Stab.
EE-JHV(1978)	0, 1/4, 1/12	3.82 <i>E</i> - 05	5.98	(-5.07, 0]
<i>Fam — JHV</i> (1979)	0, 2/27, 1/9	9.82 <i>e</i> - 06	15.64	(-5.00, 0]
HNW(DP)(1991)	0, .158, .237	2.24 <i>E</i> - 06	43.48	(-5.49, 0]
<i>SS</i> (1993)	0, 19/250, 1/10	1.08E - 06	27.30	(-5.68, 0]
MAPLE(2000)	0, .054, .102	1.55 <i>E</i> - 06	20.18	(-5.84,0]
<i>Eff</i> . – <i>JHV</i> (2010)	0, 1/20, 341/3200	2.82 <i>E</i> - 07	123.37	(-5.86, 0]
Improvement	(2023)	2.73 <i>E</i> - 07	123.75	(-5.81, 0]

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 70/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

Criteria accepted for determining good pairs usually requires that the 2-norm of the Local Truncation Error is small for the propagating method.

Pair	Nodes	LTE_2	D	Stab.
EE-JHV(1978)	0, 1/4, 1/12	3.82 <i>E</i> - 05	5.98	(-5.07, 0]
<i>Fam — JHV</i> (1979)	0, 2/27, 1/9	9.82e - 06	15.64	(-5.00, 0]
HNW(DP)(1991)	0, .158, .237	2.24E - 06	43.48	(-5.49, 0]
<i>SS</i> (1993)	0, 19/250, 1/10	1.08E - 06	27.30	(-5.68,0]
MAPLE(2000)	0,.054,.102	1.55 <i>E</i> - 06	20.18	(-5.84,0]
<i>Eff</i> . – <i>JHV</i> (2010)	0, 1/20, 341/3200	2.82 <i>E</i> - 07	123.37	(-5.86, 0]
Improvement	(2023)	2.73 <i>E</i> - 07	123.75	(-5.81, 0]
<i>New – JHV</i> (2023)	0, 1/1000, 1/6	3.67 <i>E</i> - 06	48.52	(-4.29,0]

What have we learned?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 71/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

- 1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
- 2 That there exist undiscovered parametric families of explicit R–K pairs for general IVPs.
- 3 Algorithms for deriving these new methods.
- 4 Better methods have been known for over a decade.

What have we learned?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 72/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

- 1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
- 2 That there exist undiscovered parametric families of explicit R–K pairs for general IVPs.
- 3 Algorithms for deriving these new methods.
- 4 Better methods have been known for over a decade.

What else can we study?

- 1 A more complete proof of order of the new pairs.
- 2 Why is $Rank(\alpha_4)$ only equal to 5?
- **3** Explore orthogonality properties of lower and higher order explicit methods.
- 4 Can these tools be used for deriving General Linear Methods?

What have we learned?

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 73/73

Introduction

Order Conditions Rooted Trees Types and Forma SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrice Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

- 1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
- 2 That there exist undiscovered parametric families of explicit R-K pairs for general IVPs.
- 3 Algorithms for deriving these new methods.
- 4 Better methods have been known for over a decade.

What else can we study?

- 1 A more complete proof of order of the new pairs.
- 2 Why is $Rank(\alpha_4)$ only equal to 5?
- 3 Explore orthogonality properties of lower and higher order explicit methods.
- 4 Can these tools be used for deriving General Linear Methods?

Thank you for listening

But wait! I wanted to mention one more thing ...

Nullspaces yield a new family of explicit Runge-Kutta pairs

Jim Verner, SFU, February 24, 2023 74/73

Introduction

Order Conditions Rooted Trees Types and Format: SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Are new pairs an

This week Paul Muir and Ray Spitiri provided me with a link to an Undergraduate Thesis by David K. Zhang. This thesis may be found at

https://arxiv.org/abs/1911.00318

The thesis discusses the use of Machine Learning that David K. Zhang utilized to obtain approximate coefficients for some (16-10) methods. John has been searching for such methods for over 40 years. For two methods displayed in the Appendices, coefficients are recorded in 70 decimal digit floating point form.

A challenge

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 75/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogona NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an

I have applied a MAPLE version of the code John and I wrote in 1970 to find that coefficients of the first method displayed satisfies the order conditions to 68 digits.

I have also applied a few of the tools I have described above to show for this first method that β_4 is orthogonal to each of $q^{[4]}$, $q^{[5]}$, $q^{[6]}$, and as well to each of three polynomials of degrees 4,5, and 6 that are analogs of $P_4(C)$ defined above. It might be hoped that such tools may lead to a precise characterization of such methods having exact coefficients.

A challenge

Nullspaces yield a new family of explicit Runge–Kutta pairs

Jim Verner, SFU, February 24, 2023 76/73

Introduction

Order Conditions Rooted Trees Types and Format SOOCs

" (p,p)" methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

New RK pairs

Are new pairs an

I have applied a MAPLE version of the code John and I wrote in 1970 to find that coefficients of the first method displayed satisfies the order conditions to 68 digits.

I have also applied a few of the tools I have described above to show for this first method that β_4 is orthogonal to each of $q^{[4]}$, $q^{[5]}$, $q^{[6]}$, and as well to each of three polynomials of degrees 4,5, and 6 that are analogs of $P_4(C)$ defined above. It might be hoped that such tools may lead to a precise characterization of such methods having exact coefficients.

Perhaps some of you may wish to do some studies of this. I also hope that I have given John a new perspective on this problem he has studied for so many years.

HAPPY BIRTHDAY JOHN