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Abstract

Recently, John Butcher developed a MAPLE code ’Test 21’ to
solve the order conditions directly. This code was applied to
derive 13-stage pairs of orders 7 and 8 and unexpectedly,
revealed the existence of some previously unknown pairs. This
talk reports formulas for directly deriving such a new
parametric family.
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John Butcher has developed a culture of Trees
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who helped him create new Runge–Kutta arrays
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Explicit Runge–Kutta pairs of methods

For a vector initial value problem in ordinary differential
equations:

y = f (x , y), y(x0) = y0,

an s−stage explicit Runge–Kutta pair is defined for a step of h
as,

Y[i ] = yn−1 + h ∗ Σi−1
j=1ai ,j f (xn−1 + cih,Y

[j]), i = 1, .., s,

yn = yn−1 + h ∗ Σs
i=1bi f (xn−1 + h,Y[i ]), n = 1, ..,

ŷn = yn−1 + h ∗ Σs
i=1b̂i f (xn−1 + h,Y[i ]), n = 1, ..,

where {bi , b̂i , ai ,j , ci} are coefficients of the pair,

yn approximates y(xn) to order p,

the difference yn − ŷn is an order p − 1 estimate of the
local truncation error that can be used for stepsize control.
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History of explicit Runge–Kutta derivation

When did this study start?

Long ago: The Initial Value Problem (IVP)

1901,1905: Runge, Kutta

1963: Butcher: Rooted trees yield Order Conditions

New Explicit Methods:

1963-64: Butcher: methods of orders 6 and 7
1967-68: Fehlberg derived pairs of orders 6 to 9
1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
1975: Curtis: p=10, s=18 methods.
1974-78: JHV improved pairs of orders 6 to 9
1978: Hairer: derived p=10, s=17 methods
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History of explicit Runge–Kutta derivation

When did this study start?

Long ago: The Initial Value Problem (IVP)

1901,1905: Runge, Kutta

1963: Butcher: Rooted trees yield Order Conditions

New Explicit Methods:

1963-64: Butcher: methods of orders 6 and 7
1967-68: Fehlberg derived pairs of orders 6 to 9
1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
1975: Curtis: p=10, s=18 methods.
1974-78: JHV improved pairs of orders 6 to 9
1978: Hairer: derived p=10, s=17 methods

Since these derivations, there have been many contributions to
searching and finding new methods and pairs for constructing
and maintaining software to solve real IVPs.
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History of explicit Runge–Kutta derivation

When did this study start?

Long ago: The Initial Value Problem (IVP)

1901,1905: Runge, Kutta

1963: Butcher: Rooted trees yield Order Conditions

New Explicit Methods:

1963-64: Butcher: methods of orders 6 and 7
1967-68: Fehlberg derived pairs of orders 6 to 9
1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
1975: Curtis: p=10, s=18 methods.
1974-78: JHV improved pairs of orders 6 to 9
1978: Hairer: derived p=10, s=17 methods

What other (explicit Runge–Kutta) methods exist?
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Motivation

This is a study to formulate some specific new pairs.

Better methods would lead to improvements in software
for IVPs - hence, there has since been a search for better
methods.

In 2021, John Butcher developed the MAPLE program
’Test21’ which solves order conditions directly to obtain
some (explicit) Runge–Kutta methods.

Some new R–K pairs were found on applying ’Test21’.

These new pairs were members of a parametric family.
Knowledge of the structure of these new methods may
yield more methods in this family.
The structure for these new methods may lead to other
types of new methods.
Does this new family contain methods better than those
already known?
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Order Conditions are generated by Rooted Trees

Two similar standard order conditions are

i

j

j j
Σi ,jbiai ,jc

2
j = 1/(1 ∗ 1 ∗ 3 ∗ 4)

4
3

1 1

i

i i i Σibic
3
i /3 = 1/(1 ∗ 1 ∗ 1 ∗ 4)/3

4

1 1 1

The difference gives a ’Singly Orthogonal Order Condition’:

i

j

j j
Σi ,jbi (ai ,jc

2
j −

c3
i
3 ) = 0
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Order Conditions are generated by Rooted Trees

Two similar standard order conditions are

i

j

j j
Σi ,jbiai ,jc

2
j = 1/(1 ∗ 1 ∗ 3 ∗ 4)

4
3

1 1

i

i i i Σibic
3
i /3 = 1/(1 ∗ 1 ∗ 1 ∗ 4)/3

4

1 1 1

The difference gives a ’Singly Orthogonal Order Condition’:

i

j

j j
Σi ,jbi (ai ,jc

2
j −

c3
i
3 ) = 0

We define ”stage-order” or ”subquadrature” expressions as

q[k] = (ACk−1 − Ck/k),

to find that vector b must be orthogonal to vector q[3].
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Order Conditions are generated by Rooted Trees

Two similar standard order conditions are

i

j

j j
Σi ,jbiai ,jc

2
j = 1/(1 ∗ 1 ∗ 3 ∗ 4)

4
3

1 1

i

i i i Σibic
3
i /3 = 1/(1 ∗ 1 ∗ 1 ∗ 4)/3

4

1 1 1

The difference gives a ’Singly Orthogonal Order Condition’:

i

j

j j
Σi ,jbi (ai ,jc

2
j −

c3
i
3 ) = 0

i.e. b.q[3] = 0, and past derivations have relied on making
parts of either such order conditions components equal to zero,
but more flexibility is possible.
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There are only four types of Order Conditions

Order conditions can be partitioned into four types that exist:

A. Quadrature Σibic
4
i = 1/5 =

∫ 1
0 c4dc

k-1 terminal nodes each connected to the root

B. Linear C.C. N.H. Σi ,j ,kbiai ,jaj ,kc
3
k = 1/120

all terminal nodes connected to the penultimate node

C. Linear V.C. Σi ,j ,kbic
2
i ai ,jcjaj ,kc

2
k = 1/120

’side’ subtrees of single nodes only

D. Non-Linear Σi ,j ,kbi (ai ,jcj)(ai ,kc
2
k ) = 1/36

at least two subtrees of height two or more)



Nullspaces
yield a new

family of
explicit

Runge–Kutta
pairs

Jim Verner,
SFU, February

24, 2023
22/73

Introduction

Order
Conditions

Rooted Trees

Types and Formats

SOOCs

”(p,p)”-
methods

Nullspaces

Orthogonal Matrices

Mutually Orthogonal
NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an
improvement?

There are only four types of Order Conditions

Order conditions can be partitioned into four types that exist:

A. Quadrature Σibic
4
i = 1/5 =

∫ 1
0 c4dc

k-1 terminal nodes each connected to the root

B. Linear C.C. N.H. Σi ,j ,kbiai ,jaj ,kc
3
k = 1/120

all terminal nodes connected to the penultimate node

C. Linear V.C. Σi ,kbic
2
i /2ai ,kc

2
k = 1/36

’side’ subtrees of single nodes only

D. Non-Linear Σi ,j ,kbi (ai ,jcj)(ai ,kc
2
k ) = 1/36

at least two subtrees of height two or more)

This type D becomes C if bi = 0 or Σjai ,jcj = c2
i /2, i = 1..12.
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There are only four types of Order Conditions

Order conditions can be partitioned into four types that exist:

A. Quadrature Σibic
4
i = 1/5 =

∫ 1
0 c4dc

k-1 terminal nodes each connected to the root

B. Linear C.C. N.H. Σi ,j ,kbiai ,jaj ,kc
3
k = 1/120

all terminal nodes connected to the penultimate node

C. Linear V.C. Σi ,j ,kbic
2
i ai ,jcjaj ,kc

2
k = 1/120

’side’ subtrees of single nodes only

D. Non-Linear Σi ,j ,kbi (ai ,jcj)(ai ,kc
2
k ) = 1/36

at least two subtrees of height two or more)

In general, we assume bi = 0 or q
[2]
i = q

[3]
i = 0, i = 1..12.
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Vector-Matrix format of Standard Order Conditions

A Vector-Matrix notation is more convenient:

A. Quadrature Q[5]=0 bC4e = 1/5

B. Linear Constant Coefficient bA2C3e = 1/120

C. Linear Variable Coefficient bC2ACAC2e = 1/120

D. Non-Linear b(ACe).(AC2e) = 1/36

With retained simplifying conditions, Type D conditions
collapse to type C. Hence, I will be focusing of how to solve the
first three types.
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Otherwise, the order conditions can be expressed
using integrals:

If you work with order conditions, the following interpretation
as recursive integration may be helpful - for example:

bCAC 3AC 2e =

∫ 1

c=0
c

∫ c

c̄=0
c̄3

∫ c̄

ĉ=0
ĉ2dĉdc̄dc .

i.e. b is replaced by integration on [0,1],

each A is replaced by integration on [0, c],

each C k is replaced by the form c̄k .

Some multiples of these forms can be expressed using specific
nodes as convenient.

Such expressions are utilized in proving some order conditions.
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Otherwise, the order conditions can be expressed
using integrals:

If you work with order conditions, the following interpretation
as recursive integration may be helpful - for example:

bCAC 3AC 2e =

∫ 1

c=0
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∫ c
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c̄3

∫ c̄

ĉ=0
ĉ2dĉdc̄dc .

i.e. b is replaced by integration on [0,1],

each A is replaced by integration on [0, c],

each C k is replaced by the form c̄k .

Some multiples of these forms can be expressed using specific
nodes as convenient.

Such expressions are utilized in proving some order conditions.
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each C k is replaced by the form c̄k .

Some multiples of these forms can be expressed using specific
nodes as convenient.
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Vector-Matrix Singly Orthogonal Order Conditions

Combining each Standard Order Condition with an earlier one
yields a ”Singly Orthogonal Order Condition” (SOOC) from
which constants have been eliminated:

A. Quadrature 5 - 4 b(5C 4 − 4C 3)e = 0

B. Linear Constant Coefficient bAq[4] = 0

C. Linear Variable Coefficient bC2ACq[3] = 0

D. Non Linear b(ACe.q[3]) = 0

The ”subquadratures” q[k] = (ACk−1 − Ck/k)e, show that
SOOCs constrain coefficient expressions by orthogonality.



Nullspaces
yield a new

family of
explicit

Runge–Kutta
pairs

Jim Verner,
SFU, February

24, 2023
29/73

Introduction

Order
Conditions

Rooted Trees

Types and Formats

SOOCs

”(p,p)”-
methods

Nullspaces

Orthogonal Matrices

Mutually Orthogonal
NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an
improvement?

How many SOOC.s of each type are there?

Type A B C D
Order p Np

(1) (1) = (1) (Σbi = 1)

2 1 = 1 Σbi (1− 2ci ) = 0

3 1 1 = 2 .

4 1 2 1 = 4 .

5 1 3 4 1 = 9 .

6 1 4 11 4 = 20 .

7 1 5 26 16 = 48 .

8 1 6 57 51 = 115 .
−−− −− −− −− −− −−
Totals 8 21 99 72 = 200 −1

All but (1) can be expressed as a S.O. Order Condition.
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How many SOOC.s of each type are there?

Type A B C D
Order p Np

(1) (1) = (1) (Σbi = 1)

2 1 = 1 Σbi (1− 2ci ) = 0

3 1 1 = 2 .

4 1 2 1 = 4 .

5 1 3 4 1 = 9 .

6 1 4 11 4 = 20 .

7 1 5 26 16 = 48 .

8 1 6 57 51 = 115 .
−−− −− −− −− −− −−
Totals 8 21 99 72 = 200 −1

Moreover, by suppressing (1) and 2, (ΣNp)− 2 order conditions
can be written as SOOCs with neither b1 nor c1 present.
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How many SOOC.s of each type are there?

Type A B C D
Order p Np

(1) (1) = (1) (Σbi = 1)

2 1 = 1 Σbi (1− 2ci ) = 0

3 1 1 = 2 .

4 1 2 1 = 4 .

5 1 3 4 1 = 9 .

6 1 4 11 4 = 20 .

7 1 5 26 16 = 48 .

8 1 6 57 51 = 115 .
−−− −− −− −− −− −−
Totals 8 21 99 72 = 200 −1

For (13,7-8) methods, we have seen that q
[k]
i = 0, k = 2, 3 or

bi = 0 otherwise imply conditions D collapse to conditions C.
Next, we show how conditions A and B are satisfied.
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There exist (p,p) methods for linear C.C. problems

Theorem 1: For non-homogeneous linear constant coefficient
initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for
more general problems.)

(a) For p distinct nodes ci , there is a unique solution of

Σp
i=1bic

k−1
i = 1

k , k = 1, .., p.

(b) More generally, for p distinct nodes ci , Lp+2−k,i =
bAk−1

i , i = p − k + 1..1, k = 1, .., p, uniquely satisfy

Σp+1−k
i=1 Lp+2−k,ic

j−1
i = (k−j)!

k! , j = 1, .., p − k .

Coefficients ai ,j are obtained using a back-substitution with
Lp+2−i ,j . (a) and (b) satisfy all conditions of type A and B.
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Theorem 1: For non-homogeneous linear constant coefficient
initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s,p) methods for
more general problems.)

(a) For p distinct nodes ci , there is a unique solution of

Σp
i=1bic

k−1
i = 1

k , k = 1, .., p.

(b) More generally, for p distinct nodes ci , Lp+2−k,i =
bAk−1

i , i = p − k + 1..1, k = 1, .., p, uniquely satisfy

Σp+1−k
i=1 Lp+2−k,ic

j−1
i = (k−j)!

k! , j = 1, .., p − k .

Coefficients ai ,j are obtained using a back-substitution with
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k! , j = 1, .., p − k .

Coefficients ai ,j are obtained using a back-substitution with
Lp+2−i ,j . (a) and (b) satisfy all conditions of type A and B.



Nullspaces
yield a new

family of
explicit

Runge–Kutta
pairs

Jim Verner,
SFU, February

24, 2023
36/73

Introduction

Order
Conditions

Rooted Trees

Types and Formats

SOOCs

”(p,p)”-
methods

Nullspaces

Orthogonal Matrices

Mutually Orthogonal
NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an
improvement?

Back-substitution to get ai ,j

Li ,j form a triangular array:

L =

c1

c2 L2,1

. ...
cp − 1 Lp−1,1 Lp−1,2 .. Lp−1,p−2

cs Lp,1 Lp,2 .. Lp,p−2 Lp,p−1

Lp+1,1 Lp+1,2 .. Lp+1,p−2 Lp+1,p−1 Lp+1,p

and observing bi = Lp+1,i , ap,i = (Lp,i − Σbjaj ,i )/bp, ... we
substitute up the back diagonals of L to get

c1 ⇓
c2 a2,1

. ...
cp − 1 ap−1,1 ap−1,2 .. ap−1,p−2 ↖
cp ap,1 ap,2 .. ap,p−2 ap,p−1

b1 b2 .. bp−2 bp−1 bp
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Detail on this back-substitution:

In particular, with bp = Lp+1,p and Lq,q−1, we first
”back-compute” with Lq,q−1 from the lower-right corner:

c1

c2 L2,1

. ...
cp−1 Lp−1,1 Lp−1,2 .. Lp−1,s−2

cp Lp,1 Lp,2 .. Lp,p−2 Lp,p−1

Lp+1,1 .. Lp+1,p−2 Lp+1,p−1 Lp+1,p

to get aq,q−1 = (Lq,q−1)/Lq+1,q, q = p, .., 1,

c1 ⇓
c2 a2,1

. .. ↖
cp−1 . . .. ap−1,p−2

cp . . .. . ap,p−1

. . .. . . bp
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Next diagonal of back-substitution:

Next, with Lq,q−2, we back-compute up the next diagonal:

c1

c2 L2,1

. ...
cp−1 Lp−1,1 .. Lp−1,p−3 Lp−1,p−2

cp Lp,1 Lp,2 .. Lp,p−2 Lp,p−1

Lp+1,1 .. Lp+1,p−2 Lp+1,p−1 Lp+1,p

to get ⇓
aq,q−2 = (Lq,q−1 − Lq+1,q−1 ∗ aq−1,q−2)/Lq+1,q, q = p − 1, .., 1,

c1

c2 a2,1

. ↖ ↖
cp−1 . .. ap−1,p−3 ap−1,p−2

cp . .. ap,p−2 ap,p−1

. . .. . bp−1 bp
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Next diagonal of back-substitution:

Next, with Lq,q−2, we back-compute up the next diagonal:

c1

c2 L2,1

. ...
cp−1 Lp−1,1 .. Lp−1,p−3 Lp−1,p−2

cp Lp,1 Lp,2 .. Lp,p−2 Lp,p−1

Lp+1,1 .. Lp+1,p−2 Lp+1,p−1 Lp+1,p
to get ⇓
aq,q−2 = (Lq,q−1 − Lq+1,q−1 ∗ aq−1,q−2)/Lq+1,q, q = p − 1, .., 1,

c1

c2 a2,1

. ↖ ↖ ↖
cp−1 . .. ap−1,p−3 ap−1,p−2

cp and so on . .. ap,p−2 ap,p−1

. . .. . bp−1 bp

This gives a (p,p)-method for N.H. linear C.C. IVPs.
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Here is an example of a restricted (6,6) method

This is a 6-stage method of order 6 for N.H. linear C.C. IVPs:

0
1
4

1
4

1
2 −1

2 1

3
5 − 79

125
28
25

14
125

3
4

1
32

15
28 −3

8
125
224

1 4
7 −36

49
18
7 −125

49
8
7

7
90

16
45

2
15 0 16

45
7

90

To implement this method with stepsize control, it is possible
to derive an embedded method of order 5 with one more stage.
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To implement this method with stepsize control, it is possible
to derive an embedded method of order 5 with one more stage.
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Let’s turn now to Nullspaces: βi = Left Nullspaces

Definition

For each i , we define βi to be a matrix of s columns whose
rows are left parts of SOOCs of products up to i coefficients.

βi may contain b and other rows as appropriate.

One possible
choice for β4 is,

β̂4 =



b
bC

bCC
bCCC
bAA

bAAA


but this matrix could contain more rows such as bCCA.

We might use β̄i to designate a maximal number of different
rows.
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Let’s turn now to Nullspaces: βi = Left Nullspaces
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For each i , we define βi to be a matrix of s columns whose
rows are left parts of SOOCs of products up to i coefficients.

βi may contain b and other rows as appropriate. One possible
choice for β4 is,

β̂4 =
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but this matrix could contain more rows such as bCCA.
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αj = Right Nullspaces

Definition

Analogously, for each j , we define αj to be a matrix of s rows
whose columns are right parts of SOOCs of products up to j
coefficients,

and we use ᾱj to designate a maximal number of different
columns.

αj will not contain e = [1, ..., 1]t , but could contain (I − 2C )e
and for j > 1, (2C − 3C 2)e and/or q[2].

We’ll see an example of α2 soon. An example of α3 is

α̂3 = [(2C− 3C2)e, q[2], (3C2 − 4C3)e,Aq[2], q[3]].

We observe now that any matrices βi and αj are mutually
orthogonal whenever 1 < i + j ≤ p. Hence, each contains
vectors in the Nullspace of the other.
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αj = Right Nullspaces

Definition

Analogously, for each j , we define αj to be a matrix of s rows
whose columns are right parts of SOOCs of products up to j
coefficients,

and we use ᾱj to designate a maximal number of different
columns.

αj will not contain e = [1, ..., 1]t , but could contain (I − 2C )e
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We’ll see an example of α2 soon. An example of α3 is

α̂3 = [(2C− 3C2)e, q[2], (3C2 − 4C3)e,Aq[2], q[3]].

We observe now that any matrices βi and αj are mutually
orthogonal whenever 1 < i + j ≤ p. Hence, each contains
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The Nullspace Theorem

From these definitions, we have the following:

Theorem 2: For an s-stage method of order p, it is necessary
that

βi .αj = 0, 1 < i + j ≤ p.

To derive methods, we might try to characterize coefficients of
a method that possesses such orthogonality properties. To this
end, I have studied the orthogonality properties of some new
methods found using Test21. Eventually, I found that matrix A
of such methods has a very special two-parameter partitioning.
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Nullspaces for low order Runge–Kutta methods

As an example, consider three-stage methods of general order
three:

1. Q̃[1] = Σ3
i=1bi − 1 = 0

2. Q̃[1] − 2Q̃[2] = Σ3
i=1bi(1− 2ci ) = 0

3. 2Q̃[2] − 3Q̃[3] = [b2 b3]

[
c2(2− 3c2)
c3(2− 3c3)

]
= 0

4. b.q̃[2] = 0

Four solutions exist (see Butcher, 2021, p. 63)

We observe that

β1 =
[
b1 b2 b3

]
and α2 =

 1 0 0

1− 2c2 c2(2− 3c2) q
[2]
2

1− 3c3 c3(2− 3c3) q
[2]
3

;

these are orthogonal and b 6= 0, so that α2 has rank 2.
Hence, α2 contains a row or column of zeros, or else has linear
dependence, and this leads to the four solutions that exist.
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2. Q̃[1] − 2Q̃[2] = Σ3
i=1bi(1− 2ci ) = 0

3. 2Q̃[2] − 3Q̃[3] = [b2 b3]

[
c2(2− 3c2)
c3(2− 3c3)

]
= 0

4. b.q̃[2] = 0

Four solutions exist (see Butcher, 2021, p. 63)

We observe that

β1 =
[
b1 b2 b3

]
and α2 =

 1 0 0

1− 2c2 c2(2− 3c2) q
[2]
2

1− 3c3 c3(2− 3c3) q
[2]
3

;

these are orthogonal and b 6= 0, so that α2 has rank 2.
Hence, α2 contains a row or column of zeros, or else has linear
dependence, and this leads to the four solutions that exist.
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What is known about (13,7-8) Runge–Kutta pairs?

The 12-stage method of order 8 is derived first:

For this, split an (8,8) method for N.H. C.C. linear
problems after column 1, by moving values
Lp+2−k,j , j = 2..8 to Ls+2−k,j , j = 6..s for s = 12, and
then insert new values Ls+2−k,j = 0 (i.e.bj = L13,j =
0, bAj = L12,j = 0, .. j = 2, 3, 4, 5.)

On stages 2..9, impose stage-order conditions q[k] = 0,
and additional constraints on nodes and coefficients so
that remaining conditions of type C are satisfied.

Assign bi = L13,i , i = 1..12, and after computing
coefficients from stages 2 to 9, use a back substitution
algorithm on Ls+2−k,j to compute ai ,j , j=i-1..1, i=12,11,10.

Then, the embedded method of order 7 is obtained
from similar values L̂i ,j using another back-substitution.
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What is known about (13,7-8) Runge–Kutta pairs?

The 12-stage method of order 8 is derived first:

For this, split an (8,8) method for N.H. C.C. linear
problems after column 1, by moving values
Lp+2−k,j , j = 2..8 to Ls+2−k,j , j = 6..s for s = 12, and
then insert new values Ls+2−k,j = 0 (i.e.bj = L13,j =
0, bAj = L12,j = 0, .. j = 2, 3, 4, 5.)

On stages 2..9, impose stage-order conditions q[k] = 0,
and additional constraints on nodes and coefficients so
that remaining conditions of type C are satisfied.

Assign bi = L13,i , i = 1..12, and after computing
coefficients from stages 2 to 9, use a back substitution
algorithm on Ls+2−k,j to compute ai ,j , j=i-1..1, i=12,11,10.

Then, the embedded method of order 7 is obtained
from similar values L̂i ,j using another back-substitution.
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What is known about (13,7-8) Runge–Kutta pairs?

The 12-stage method of order 8 is derived first:

For this, split an (8,8) method for N.H. C.C. linear
problems after column 1, by moving values
Lp+2−k,j , j = 2..8 to Ls+2−k,j , j = 6..s for s = 12, and
then insert new values Ls+2−k,j = 0 (i.e.bj = L13,j =
0, bAj = L12,j = 0, .. j = 2, 3, 4, 5.)

On stages 2..9, impose stage-order conditions q[k] = 0,
and additional constraints on nodes and coefficients so
that remaining conditions of type C are satisfied.

Assign bi = L13,i , i = 1..12, and after computing
coefficients from stages 2 to 9, use a back substitution
algorithm on Ls+2−k,j to compute ai ,j , j=i-1..1, i=12,11,10.

Then, the embedded method of order 7 is obtained
from similar values L̂i ,j using another back-substitution.
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Properties of the New Methods

On computation with some new methods of order 8, I found

β̄4 is 18× 12, has four columns of zeros, and rank = 6.

β̄4 is spanned by the rows of β̂4. (Linear independence is
needed.)

P4(C ) = I − 20C + 90C 2 − 140C 3 + 70C 4 and q[4] are
Nullvectors of β̄4. Hence, Nullspace (β̄4) is spanned by
{ei, i = 2..5, P4(C), q[4]}.

If c6 = 1/2, then Rank (Columns 6 to 12 of β̄4)=5, and
q[4] is a Nullvector of this submatrix.

Rank of α4 = 5. (I expected this rank to be six.)

Non-trivial columns of α4 are P4(C) and q[4]}.

Observe that q[4] = 0 used in known (12,8) methods is relaxed
so that lhis vector lies in the Nullspace of β̄4.
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Properties of the New Methods

On computation with some new methods of order 8, I found

β̄4 is 18× 12, has four columns of zeros, and rank = 6.

β̄4 is spanned by the rows of β̂4. (Linear independence is
needed.)

P4(C ) = I − 20C + 90C 2 − 140C 3 + 70C 4 and q[4] are
Nullvectors of β̄4. Hence, Nullspace (β̄4) is spanned by
{ei, i = 2..5, P4(C), q[4]}.

If c6 = 1/2, then Rank (Columns 6 to 12 of β̄4)=5, and
q[4] is a Nullvector of this submatrix.

Rank of α4 = 5. (I expected this rank to be six.)

Non-trivial columns of α4 are P4(C) and q[4]}.

Observe that q[4] = 0 used in known (12,8) methods is relaxed
so that lhis vector lies in the Nullspace of β̄4.
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Properties of the New Methods

On computation with some new methods of order 8, I found

β̄4 is 18× 12, has four columns of zeros, and rank = 6.

β̄4 is spanned by the rows of β̂4. (Linear independence is
needed.)

P4(C ) = I − 20C + 90C 2 − 140C 3 + 70C 4 and q[4] are
Nullvectors of β̄4. Hence, Nullspace (β̄4) is spanned by
{ei, i = 2..5, P4(C), q[4]}.

If c6 = 1/2, then Rank (Columns 6 to 12 of β̄4)=5, and
q[4] is a Nullvector of this submatrix.

Rank of α4 = 5. (I expected this rank to be six.)

Non-trivial columns of α4 are P4(C) and q[4]}.

Observe that q[4] = 0 used in known (12,8) methods is relaxed
so that lhis vector lies in the Nullspace of β̄4.
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Properties of the New Methods

On computation with some new methods of order 8, I found

β̄4 is 18× 12, has four columns of zeros, and rank = 6.

β̄4 is spanned by the rows of β̂4. (Linear independence is
needed.)

P4(C ) = I − 20C + 90C 2 − 140C 3 + 70C 4 and q[4] are
Nullvectors of β̄4. Hence, Nullspace (β̄4) is spanned by
{ei, i = 2..5, P4(C), q[4]}.

If c6 = 1/2, then Rank (Columns 6 to 12 of β̄4)=5, and
q[4] is a Nullvector of this submatrix.

Rank of α4 = 5. (I expected this rank to be six.)

Non-trivial columns of α4 are P4(C) and q[4]}.

Observe that q[4] = 0 used in known (12,8) methods is relaxed
so that lhis vector lies in the Nullspace of β̄4.
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Outline of New (12,8) Methods

Almost Theorem 3: Compute for a 12-stage method:

1 12 nodes with c1, c6, .., c12 distinct confined by
c3 = 2c4/3, c5 = (4c4 − 3c6)/(c6(6c4 − 4c6)), and for
π(c) = c(c − c6)(c − c7)(c − c8), c9 is chosen so that[ ∫ 1

0
π(c)

(c − 1)2

2!
dc
][ ∫ 1

0
π(c)(c − c9)

(c − 1)2

2!
dc
]

=
[ ∫ 1

0
π(c)

(c − 1)3

3!
dc
][ ∫ 1

0
π(c)(c − c9)

(c − 1)

1!
dc
]
.

2 Choose stages 2 to 9 so that q
[k]
i = 0, k = 1, 2, 3.

3 Constrain stage 9 so that Σibic
2
i ai ,j = 0, j = 4, 5.

4 Choose remaining parameters so β̄4 is orthogonal to q[4].

5 Li ,j (with Li ,j = 0, j = 2..5) and back-substitution, for the
weights bi and stages 12 to 10.

Then, the method has order 8.
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Partial proof

Proof.

Conditions A and B follow from q[k], k = 1, 2, 3, and Li ,j . Also,

values for q
[k]
i force Conditions D to collapse to Conditions C .

To establish Conditions C, formulas among A,C , b are used:

Li ,j with i = 13, 12 imply bA = b(I − C )

post-multiplication of bA-b(I-C) by A,C,AA,CC,AC,CA

bCCA ∗ q[4] = 0

These imply bAC, bCA, bCAA, bACC lie in the rowspace of β̂4;
bAAC, bCAC, bACA, added to linear combinations of
C k , k = 0..4 can be shown to be orthogonal to q[4] by direct
computation. These imply most of Conditions C hold.

This will leave one arbitrary coefficient in row 8 of A (selected
as a8,7).As well, under further constraints, a7,6 is arbitrary.
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Algorithm for Known (12,8) methods

Stage 2: q
[1]
2 = 0 =⇒ a2,1 = c2.

Stage 3: q
[1]
3 = q

[2]
3 = 0.

Stage 4: a4,2 = 0, q
[k]
4 = 0, k = 1, 2, 3.

Stage 5: a5,2 = 0, q
[k]
5 = 0, k = 1, 2, 3.

Stage 6: a6,2 = a6,3 = 0, q
[k]
6 = 0, k = 1, 2, 3, 4.

Stage 7: a7,2 = a7,3 = 0, q
[k]
7 = 0, k = 1, 2, 3, 4.

Stage 8: a8,2 = a8,3 = 0, a8,4, q
[k]
8 = 0, k = 1, 2, 3, 4.

Stage 9: a9,2 = a9,3 := 0, q
[k]
9 = 0, k = 1, 2, 3, 4.

L13,10(c10 − c12)(c10 − c11)Σ9
j=k+1L11,jaj ,k

-L11,10Σ9
j=k+1L13,j(cj − c12)(cj − c11)aj ,k = 0, k = 4, 5.

Stages 12..10 and bi : Observe bi = L13,i , i = 1..12, and
use back-substitution on L14−k,i , k = 2..4, i = 13− k , .., 1
to get a14−k,i , k = 2..4, i = 13− k..1.



Nullspaces
yield a new

family of
explicit

Runge–Kutta
pairs

Jim Verner,
SFU, February

24, 2023
60/73

Introduction

Order
Conditions

Rooted Trees

Types and Formats

SOOCs

”(p,p)”-
methods

Nullspaces

Orthogonal Matrices

Mutually Orthogonal
NullSpaces

New RK pairs

Structure of Matrix A

Are new pairs an
improvement?

Algorithm for Known (12,8) methods

Stage 2: q
[1]
2 = 0 =⇒ a2,1 = c2. SO=1

Stage 3: q
[1]
3 = q

[2]
3 = 0. SO=2

Stage 4: a4,2 = 0, q
[k]
4 = 0, k = 1, 2, 3. SO=3

Stage 5: a5,2 = 0, q
[k]
5 = 0, k = 1, 2, 3. SO=3

Stage 6: a6,2 = a6,3 = 0, q
[k]
6 = 0, k = 1, 2, 3, 4. SO=4

Stage 7: a7,2 = a7,3 = 0, q
[k]
7 = 0, k = 1, 2, 3, 4. SO=4

Stage 8: a8,2 = a8,3 = 0, a8,4, q
[k]
8 = 0, k = 1, 2, 3, 4.SO=4

Stage 9: a9,2 = a9,3 := 0, q
[k]
9 = 0, k = 1, 2, 3, 4. SO=4

L13,10(c10 − c12)(c10 − c11)Σ9
j=k+1L11,jaj ,k

-L11,10Σ9
j=k+1L13,j(cj − c12)(cj − c11)aj ,k = 0, k = 4, 5.

Stages 12..10 and bi : Observe bi = L13,i , i = 1..12, and
use back-substitution on L14−k,i , k = 2..4, i = 13− k , .., 1
to get a14−k,i , k = 2..4, i = 13− k..1.
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Algorithm for New (12,8) methods - reduce SO

Stage 2: q
[1]
2 = 0 =⇒ a2,1 = c2. SO=1

Stage 3: q
[1]
3 = q

[2]
3 = 0. SO=2

Stage 4: a4,2 = 0, q
[k]
4 = 0, k = 1, 2, 3. SO=3

Stage 5: a5,2 = 0, q
[k]
5 = 0, k = 1, 2, 3. SO=3

Stage 6: a6,2 = a6,3 = 0, q
[k]
6 = 0, k = 1, 2, 3, 4. SO=4

Stage 7: a7,2 = a7,3 = 0, a7,6, q
[k]
7 = 0, k = 1, 2, 3 >SO=3

Stage 8: a8,2 = a8,3 = 0, a8,7, q
[k]
8 = 0, k = 1, 2, 3 >SO=3

Stage 9: a9,2 = a9,3 := 0, q
[k]
9 = 0, k = 1, 2, 3 >SO=3

L13,10(c10 − c12)(c10 − c11)Σ9
j=k+1L11,jaj ,k

-L11,10Σ9
j=k+1L13,j(cj − c12)(cj − c11)aj ,k = 0, k = 4, 5.

Stages 12..10 and bi : Observe bi = L13,i , i = 1..12, and
use back-substitution on L14−k,i , k = 2..4, i = 13− k , .., 1
to get a14−k,i , k = 2..4, i = 13− k..1.

But to get order 8 more is needed to replace q[4] =0.
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Structure of New Pairs

Theorem 4: Assume {b, b̂, A, c}, yield a traditional (13,7-8)
pair. For c6 = 1/2, and any other value of a7,6 = â76, and
possibly a different value of a8,7 = â87, define four vectors by

R1 is the solution of a7,2 = a7,3 = 0, a7,6 = â76,

q
[k]
7 = 0, k = 1, 2, 3.

V1 is the solution of V 17 = 1, and β̂4.V 1 = 0.

R2 is the solution of a8,2 = a8,3 = 0, a8,7 = â87,

q
[k]
8 = 0, k = 1, 2, 3, q

[4]
8 = V 18 ∗ q[4]

7 /V 17.

V2 is the solution of V 28 = 1, and β̂3.V 2 = 0.

Then for each â76 and â87, and

Â = A + V1.R1â76 + V2.R2â87,

(Vi.Ri is an outer product) {b, b̂, Â, c} yields a new (13,7-8)
pair.
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Structure of New Pairs

Theorem 4: Assume {b, b̂, A, c}, yield a traditional (13,7-8)
pair. For c6 = 1/2, and any other value of a7,6 = â76, and
possibly a different value of a8,7 = â87, define four vectors by

R1 is the solution of a7,2 = a7,3 = 0, a7,6 = â76,

q
[k]
7 = 0, k = 1, 2, 3.

V1 is the solution of V 17 = 1, and β̂4.V 1 = 0.

R2 is the solution of a8,2 = a8,3 = 0, a8,7 = â87,

q
[k]
8 = 0, k = 1, 2, 3, q

[4]
8 = V 18 ∗ q[4]

7 /V 17.

V2 is the solution of V 28 = 1, and β̂3.V 2 = 0.

Then for each â76 and â87, and

Â = A + V1.R1â76 + V2.R2â87,

(Vi.Ri is an outer product) {b, b̂, Â, c} yields a new (13,7-8)
pair.
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Structure of New Pairs

Theorem 4: Assume {b, b̂, A, c}, yield a traditional (13,7-8)
pair. For c6 = 1/2, and any other value of a7,6 = â76, and
possibly a different value of a8,7 = â87, define four vectors by

R1 is the solution of a7,2 = a7,3 = 0, a7,6 = â76,

q
[k]
7 = 0, k = 1, 2, 3.

V1 is the solution of V 17 = 1, and β̂4.V 1 = 0.

R2 is the solution of a8,2 = a8,3 = 0, a8,7 = â87,

q
[k]
8 = 0, k = 1, 2, 3, q

[4]
8 = V 18 ∗ q[4]

7 /V 17.

V2 is the solution of V 28 = 1, and β̂3.V 2 = 0.

Then for each â76 and â87, and

Â = A + V1.R1â76 + V2.R2â87,

(Vi.Ri is an outer product) {b, b̂, Â, c} yields a new (13,7-8)
pair.
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Structure of New Pairs (Continued)

Proof.

For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
Nullvector of β̄4. Also, R1 is a left Nullvector of ᾱ4. The
matrix for V2 has rank 4, and so V2 is a right Nullvector of β̄3.
As well, R2 is a left Nullvector of ᾱ3. These seem sufficient to
prove that coefficients {b, bh, Â, c} yield a (13,7-8) pair.

For each traditional (13,7-8) pair with c6 = 1/2 and a value of
a8,7, this yields a new family of such pairs in the parameter
a7,6. While we have exchanged the freedom to choose an
arbitrary value for c6 to make a7,6 a parameter, we have
derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for
the traditional pairs. When c6 = 1/2, I have used this code to
optimize over the range of arbitrary nodes, a7,6 and a8,7 .
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Structure of New Pairs (Continued)

Proof.

For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
Nullvector of β̄4. Also, R1 is a left Nullvector of ᾱ4. The
matrix for V2 has rank 4, and so V2 is a right Nullvector of β̄3.
As well, R2 is a left Nullvector of ᾱ3. These seem sufficient to
prove that coefficients {b, bh, Â, c} yield a (13,7-8) pair.

For each traditional (13,7-8) pair with c6 = 1/2 and a value of
a8,7, this yields a new family of such pairs in the parameter
a7,6. While we have exchanged the freedom to choose an
arbitrary value for c6 to make a7,6 a parameter, we have
derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for
the traditional pairs. When c6 = 1/2, I have used this code to
optimize over the range of arbitrary nodes, a7,6 and a8,7 .
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Structure of New Pairs (Continued)

Proof.

For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
Nullvector of β̄4. Also, R1 is a left Nullvector of ᾱ4. The
matrix for V2 has rank 4, and so V2 is a right Nullvector of β̄3.
As well, R2 is a left Nullvector of ᾱ3. These seem sufficient to
prove that coefficients {b, bh, Â, c} yield a (13,7-8) pair.

For each traditional (13,7-8) pair with c6 = 1/2 and a value of
a8,7, this yields a new family of such pairs in the parameter
a7,6. While we have exchanged the freedom to choose an
arbitrary value for c6 to make a7,6 a parameter, we have
derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for
the traditional pairs. When c6 = 1/2, I have used this code to
optimize over the range of arbitrary nodes, a7,6 and a8,7 .
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Are there efficient pairs within the new family?

Criteria accepted for determining good pairs usually requires
that the 2-norm of the Local Truncation Error is small for the
propagating method.

Pair Nodes LTE2 D Stab.

EE − JHV (1978) 0, 1/4, 1/12 3.82E − 05 5.98 (−5.07, 0]

Fam − JHV (1979) 0, 2/27, 1/9 9.82e − 06 15.64 (−5.00, 0]

HNW (DP)(1991) 0, .158, .237 2.24E − 06 43.48 (−5.49, 0]

SS(1993) 0, 19/250, 1/10 1.08E − 06 27.30 (−5.68, 0]

MAPLE(2000) 0, .054, .102 1.55E − 06 20.18 (−5.84, 0]

Eff .− JHV (2010) 0, 1/20, 341/3200 2.82E − 07 123.37 (−5.86, 0]
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Are there efficient pairs within the new family?

Criteria accepted for determining good pairs usually requires
that the 2-norm of the Local Truncation Error is small for the
propagating method.

Pair Nodes LTE2 D Stab.

EE − JHV (1978) 0, 1/4, 1/12 3.82E − 05 5.98 (−5.07, 0]

Fam − JHV (1979) 0, 2/27, 1/9 9.82e − 06 15.64 (−5.00, 0]

HNW (DP)(1991) 0, .158, .237 2.24E − 06 43.48 (−5.49, 0]

SS(1993) 0, 19/250, 1/10 1.08E − 06 27.30 (−5.68, 0]

MAPLE(2000) 0, .054, .102 1.55E − 06 20.18 (−5.84, 0]

Eff .− JHV (2010) 0, 1/20, 341/3200 2.82E − 07 123.37 (−5.86, 0]

Improvement (2023) 2.73E − 07 123.75 (−5.81, 0]
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Are there efficient pairs within the new family?

Criteria accepted for determining good pairs usually requires
that the 2-norm of the Local Truncation Error is small for the
propagating method.

Pair Nodes LTE2 D Stab.

EE − JHV (1978) 0, 1/4, 1/12 3.82E − 05 5.98 (−5.07, 0]

Fam − JHV (1979) 0, 2/27, 1/9 9.82e − 06 15.64 (−5.00, 0]

HNW (DP)(1991) 0, .158, .237 2.24E − 06 43.48 (−5.49, 0]

SS(1993) 0, 19/250, 1/10 1.08E − 06 27.30 (−5.68, 0]

MAPLE(2000) 0, .054, .102 1.55E − 06 20.18 (−5.84, 0]

Eff .− JHV (2010) 0, 1/20, 341/3200 2.82E − 07 123.37 (−5.86, 0]

Improvement (2023) 2.73E − 07 123.75 (−5.81, 0]

New − JHV (2023) 0, 1/1000, 1/6 3.67E − 06 48.52 (−4.29, 0]
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What have we learned?

1 An algorithm for deriving methods for N.H. linear C.C.
IVPs.

2 That there exist undiscovered parametric families of
explicit R–K pairs for general IVPs.

3 Algorithms for deriving these new methods.

4 Better methods have been known for over a decade.

What else can we study?

1 A more complete proof of order of the new pairs.

2 Why is Rank(α4) only equal to 5?

3 Explore orthogonality properties of lower and higher order
explicit methods.

4 Can these tools be used for deriving General Linear
Methods?

Thank you for listening
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But wait! I wanted to mention one more thing...

This week Paul Muir and Ray Spitiri provided me with a link to
an Undergraduate Thesis by David K. Zhang. This thesis may
be found at

https://arxiv.org/abs/1911.00318

The thesis discusses the use of Machine Learning that David K.
Zhang utilized to obtain approximate coefficients for some
(16-10) methods. John has been searching for such methods
for over 40 years. For two methods displayed in the Appendices,
coefficients are recorded in 70 decimal digit floating point form.
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A challenge

I have applied a MAPLE version of the code John and I wrote
in 1970 to find that coefficients of the first method displayed
satisfies the order conditions to 68 digits.

I have also applied a few of the tools I have described above to
show for this first method that β4 is orthogonal to each of
q[4], q[5], q[6], and as well to each of three polynomials of
degrees 4,5, and 6 that are analogs of P4(C ) defined above. It
might be hoped that such tools may lead to a precise
characterization of such methods having exact coefficients.

Perhaps some of you may wish to do some studies of this. I
also hope that I have given John a new perspective on this
problem he has studied for so many years.

HAPPY BIRTHDAY JOHN
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