Nullspaces yield a new family of explicit Runge-Kutta pairs

Nullspaces
yield a new family of explicit
Runge-Kutta pairs
$1 / 73$

Jim Verner

PIMS \& Department of Mathematics Simon Fraser University, Canada jimverner@shaw.ca
http://www.math.sfu.ca/~jverner

Abstract

Recently, John Butcher developed a MAPLE code 'Test 21' to solve the order conditions directly. This code was applied to derive 13 -stage pairs of orders 7 and 8 and unexpectedly, revealed the existence of some previously unknown pairs. This talk reports formulas for directly deriving such a new parametric family.

February 24, 2023

John Butcher has developed a culture of Trees

Nullspaces yield a new family of explicit
Runge-Kutta pairs

2/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
" $(p, p)^{\prime}-$
methods
Nullspaces
Orthogonal Matrices Mutually Orthogonal Nuilspaces

New RK pairs Structure of Matrix Are new pairs an

and over the years has made many friends

Nullspaces yield a new family of explicit Runge-Kutta pairs

SCADE93 Auckland, New Zealand Jan 4-8. 1993

who helped him create new Runge-Kutta arrays

Outline

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

5/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
' $(\mathrm{p}, \mathrm{p})^{\prime}$ methods

Nullspaces
Orthogonal Matrices Mutually Orthogona Nullspaces

1 Introduction
2 Order Conditions
■ Rooted Trees

- Types and Formats

■ SOOCs
3 "(p,p)"-methods
4 Nullspaces
■ Orthogonal Matrices
■ Mutually Orthogonal NullSpaces
5 New RK pairs

- Structure of Matrix A
- Are new pairs an improvement?

Explicit Runge-Kutta pairs of methods

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

6/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats
soocs
(p,p)
methods
Nullspaces
Orthogonal Matrices
Mutually Orthogona Nullspaces

New RK pairs Structure of Matrix Are new pairs an

For a vector initial value problem in ordinary differential equations:

$$
y=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

Explicit Runge-Kutta pairs of methods

Nullspaces
yield a new family of explicit
Runge-Kutta pairs
$7 / 73$

For a vector initial value problem in ordinary differential equations:

$$
y=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

an s-stage explicit Runge-Kutta pair is defined for a step of h as,

$$
\mathrm{Y}^{[i]}=\mathrm{y}_{n-1}+h * \sum_{j=1}^{i-1} a_{i, j} f\left(x_{n-1}+c_{i} h, \mathrm{Y}^{[j]}\right), \quad i=1, . ., s,
$$

$$
\begin{array}{ll}
\mathrm{y}_{n}=\mathrm{y}_{n-1}+h * \sum_{i=1}^{s} b_{i} f\left(x_{n-1}+h, \mathrm{Y}^{[i]}\right), & n=1, . . \\
\widehat{\mathrm{y}_{n}}=\mathrm{y}_{n-1}+h * \sum_{i=1}^{s} \widehat{b}_{i} f\left(x_{n-1}+h, \mathrm{Y}^{[i]}\right), & n=1, . .
\end{array}
$$

Explicit Runge-Kutta pairs of methods

Nullspaces
yield a new family of explicit
Runge-Kutta pairs
$8 / 73$

For a vector initial value problem in ordinary differential equations:

$$
y=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

an s-stage explicit Runge-Kutta pair is defined for a step of h as,

$$
\begin{array}{cl}
\mathrm{Y}^{[i]}=\mathrm{y}_{n-1}+h * \sum_{j=1}^{i-1} a_{i, j} f\left(x_{n-1}+c_{i} h, \mathrm{Y}^{[j]}\right), & i=1, . ., s, \\
\mathrm{y}_{n}=\mathrm{y}_{n-1}+h * \sum_{i=1}^{s} b_{i} f\left(x_{n-1}+h, \mathrm{Y}^{[i]}\right), & n=1, . ., \\
\widehat{\mathrm{y}_{n}}=\mathrm{y}_{n-1}+h * \sum_{i=1}^{s} \widehat{b}_{i} f\left(x_{n-1}+h, \mathrm{Y}^{[i]}\right), & n=1, . .,
\end{array}
$$

■ where $\left\{b_{i}, \widehat{b_{i}}, a_{i, j}, c_{i}\right\}$ are coefficients of the pair,

- y_{n} approximates $\mathrm{y}\left(x_{n}\right)$ to order p ,
- the difference $y_{n}-\widehat{y_{n}}$ is an order $p-1$ estimate of the local truncation error that can be used for stepsize control.

History of explicit Runge-Kutta derivation

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

When did this study start?
■ Long ago: The Initial Value Problem (IVP)
■ 1901,1905: Runge, Kutta

- 1963: Butcher: Rooted trees yield Order Conditions

Introduction

Order

Conditions
Rooted Trees
Types and Forrnats soocs
" (p, p) "
methods
Nullspaces Orthogonal Matrices Mutually Orthogona Nullspaces

History of explicit Runge-Kutta derivation

Nullspaces yield a new family of explicit
Runge-Kutta pairs

10/73

When did this study start?
■ Long ago: The Initial Value Problem (IVP)
■ 1901,1905: Runge, Kutta

- 1963: Butcher: Rooted trees yield Order Conditions

■ New Explicit Methods:
■ 1963-64: Butcher: methods of orders 6 and 7

- 1967-68: Fehlberg derived pairs of orders 6 to 9
- 1968-72: Cooper and JHV, Curtis: $p=8, s=11$ methods.
- 1975: Curtis: $\mathrm{p}=10, \mathrm{~s}=18$ methods.
- 1974-78: JHV improved pairs of orders 6 to 9

■ 1978: Hairer: derived $\mathrm{p}=10, \mathrm{~s}=17$ methods

History of explicit Runge-Kutta derivation

Nullspaces
yield a new family of explicit

11/73

When did this study start?
■ Long ago: The Initial Value Problem (IVP)

- 1901,1905: Runge, Kutta
- 1963: Butcher: Rooted trees yield Order Conditions

■ New Explicit Methods:

- 1963-64: Butcher: methods of orders 6 and 7
- 1967-68: Fehlberg derived pairs of orders 6 to 9

■ 1968-72: Cooper and JHV, Curtis: $p=8, s=11$ methods.

- 1975: Curtis: $\mathrm{p}=10, \mathrm{~s}=18$ methods.
- 1974-78: JHV improved pairs of orders 6 to 9

■ 1978: Hairer: derived $\mathrm{p}=10, \mathrm{~s}=17$ methods
Since these derivations, there have been many contributions to searching and finding new methods and pairs for constructing and maintaining software to solve real IVPs.

History of explicit Runge-Kutta derivation

Nullspaces yield a new family of explicit
Runge-Kutta pairs

12/73

When did this study start?
■ Long ago: The Initial Value Problem (IVP)

- 1901,1905: Runge, Kutta

■ 1963: Butcher: Rooted trees yield Order Conditions
■ New Explicit Methods:

- 1963-64: Butcher: methods of orders 6 and 7
- 1967-68: Fehlberg derived pairs of orders 6 to 9
- 1968-72: Cooper and JHV, Curtis: $\mathrm{p}=8, \mathrm{~s}=11$ methods.
- 1975: Curtis: $\mathrm{p}=10, \mathrm{~s}=18$ methods.
- 1974-78: JHV improved pairs of orders 6 to 9
- 1978: Hairer: derived $\mathrm{p}=10, \mathrm{~s}=17$ methods

What other (explicit Runge-Kutta) methods exist?

Motivation

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

13/73

Introduction

Order

Conditions
Rooted Trees
Types and Formats
soocs
" (p, p) "
methods
Nullspaces
Orthogonal Matrices Mutually Orthogona Nülspaces

New RK pairs

- This is a study to formulate some specific new pairs.

Motivation

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

■ This is a study to formulate some specific new pairs.
■ Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.

Motivation

Nullspaces
yield a new family of explicit Runge-Kutta pairs
$15 / 73$

■ This is a study to formulate some specific new pairs.
■ Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.
■ In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge-Kutta methods.

Motivation

Nullspaces yield a new family of explicit Runge-Kutta pairs

16/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
(p,p)
methods
Nullspaces Orthogonal Matrices Mutually Orthogonal NullSpaces

■ This is a study to formulate some specific new pairs.
■ Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.

- In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge-Kutta methods.
- Some new R-K pairs were found on applying 'Test21'.

Motivation

Nullspaces yield a new family of explicit
Runge-Kutta pairs
$17 / 73$

- This is a study to formulate some specific new pairs.

■ Better methods would lead to improvements in software for IVPs - hence, there has since been a search for better methods.

- In 2021, John Butcher developed the MAPLE program 'Test21' which solves order conditions directly to obtain some (explicit) Runge-Kutta methods.
- Some new R-K pairs were found on applying 'Test21'.
- These new pairs were members of a parametric family.
- Knowledge of the structure of these new methods may yield more methods in this family.
- The structure for these new methods may lead to other types of new methods.
- Does this new family contain methods better than those already known?

Order Conditions are generated by Rooted Trees

Nullspaces yield a new family of explicit Runge-Kutta pairs

18/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
" (p, p) "
methods
Nullspaces Orthogonal Matrices Mutually Orthogona Nullspaces

Two similar standard order conditions are

$$
\Sigma_{i, j} b_{i} a_{i, j} c_{j}^{2}=1 /(1 * 1 * 3 * 4)
$$

$i \mathrm{i}$

$$
\Sigma_{i} b_{i} c_{i}^{3} / 3=1 /(1 * 1 * 1 * 4) / 3
$$

Order Conditions are generated by Rooted Trees

Nullspaces yield a new family of explicit
Runge-Kutta pairs

Two similar standard order conditions are

$$
\Sigma_{i, j} b_{i} a_{i, j} c_{j}^{2}=1 /(1 * 1 * 3 * 4)
$$

$$
\sum_{i} b_{i} c_{i}^{3} / 3=1 /(1 * 1 * 1 * 4) / 3
$$

V

The difference gives a 'Singly Orthogonal Order Condition':

$$
\Sigma_{i, j} b_{i}\left(a_{i, j} c_{j}^{2}-\frac{c_{i}^{3}}{3}\right)=0
$$

We define "stage-order" or "subquadrature" expressions as

$$
\mathrm{q}^{[\mathrm{k}]}=\left(\mathrm{AC}^{\mathrm{k}-1}-\mathrm{C}^{\mathrm{k}} / \mathrm{k}\right),
$$

to find that vector b must be orthogonal to vector $q^{[3]}$.

Order Conditions are generated by Rooted Trees

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

Two similar standard order conditions are

$$
\Sigma_{i, j} b_{i} a_{i, j} c_{j}^{2}=1 /(1 * 1 * 3 * 4)
$$

$$
\sum_{i} b_{i} c_{i}^{3} / 3=1 /(1 * 1 * 1 * 4) / 3
$$

The difference gives a 'Singly Orthogonal Order Condition':

$$
\Sigma_{i, j} b_{i}\left(a_{i, j} c_{j}^{2}-\frac{c_{i}^{3}}{3}\right)=0
$$

i.e. \quad b. $q^{[3]}=0$, and past derivations have relied on making parts of either such order conditions components equal to zero, but more flexibility is possible.

There are only four types of Order Conditions

Nullspaces yield a new family of explicit
Runge-Kutta pairs

21/73

- D. Non-Linear

$$
\Sigma_{i, j, k} b_{i}\left(a_{i, j} c_{j}\right)\left(a_{i, k} c_{k}^{2}\right)=1 / 36
$$

at least two subtrees of height two or more)

There are only four types of Order Conditions

Nullspaces yield a new family of explicit Runge-Kutta pairs

22/73

- B. Linear C.C. N.H. $\quad \Sigma_{i, j, k} b_{i} a_{i, j} a_{j, k} c_{k}^{3}=1 / 120$ all terminal nodes connected to the penultimate node
- C. Linear V.C.

$$
\sum_{i, k} b_{i} c_{i}^{2} / 2 a_{i, k} c_{k}^{2}=1 / 36
$$ 'side' subtrees of single nodes only

■ D. Non-Linear

$$
\sum_{i, j, k} b_{i}\left(a_{i, j} c_{j}\right)\left(a_{i, k} c_{k}^{2}\right)=1 / 36
$$

at least two subtrees of height two or more)
This type D becomes C if $b_{i}=0$ or $\Sigma_{j} a_{i, j} c_{j}=c_{i}^{2} / 2, i=1 . .12$.

There are only four types of Order Conditions

Nullspaces yield a new family of explicit Runge-Kutta pairs

23/73

- D. Non-Linear

$$
\Sigma_{i, j, k} b_{i}\left(a_{i, j} c_{j}\right)\left(a_{i, k} c_{k}^{2}\right)=1 / 36
$$ at least two subtrees of height two or more)

In general, we assume $b_{i}=0$ or $q_{i}^{[2]}=q_{i}^{[3]}=0, i=1 . .12$.

Vector-Matrix format of Standard Order Conditions

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

24/73
A Vector-Matrix notation is more convenient:
A. Quadrature $\quad \mathbf{Q}^{[5]}=\mathbf{0}$
$W \quad b C^{4} e=1 / 5$
D. Non-Linear

$$
\mathrm{bC}^{2} \mathrm{ACAC}^{2} \mathrm{e}=1 / 120
$$

C. Linear Variable Coefficient
B. Linear Constant Coefficient

$$
b^{2} C^{3} e=1 / 120
$$

$$
b(A C e) \cdot\left(A C^{2} e\right)=1 / 36
$$

With retained simplifying conditions, Type D conditions collapse to type C. Hence, I will be focusing of how to solve the first three types.

Otherwise, the order conditions can be expressed using integrals:

Nullspaces yield a new family of explicit
Runge-Kutta pairs

25/73

Introduction

Order

Conditions

Rooted Trees
Types and Formats SOOGs
" (p, p) "
methods
Nullspaces
Orthogonal Matrices
Mutually Orthogonal NullSpaces

If you work with order conditions, the following interpretation as recursive integration may be helpful - for example:

$$
b C A C^{3} A C^{2} e=\int_{c=0}^{1} c \int_{\bar{c}=0}^{c} \bar{c}^{3} \int_{\hat{c}=0}^{\bar{c}} \hat{c}^{2} d \hat{c} d \bar{c} d c
$$

Otherwise, the order conditions can be expressed using integrals:

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

26/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats SOOGs

- i.e. b is replaced by integration on $[0,1]$,
- each A is replaced by integration on $[0, c]$,
- each C^{k} is replaced by the form \bar{c}^{k}.

Otherwise, the order conditions can be expressed using integrals:

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

27/73

■ i.e. b is replaced by integration on $[0,1]$,

- each A is replaced by integration on $[0, c]$,
- each C^{k} is replaced by the form \bar{c}^{k}.

Some multiples of these forms can be expressed using specific nodes as convenient.

Such expressions are utilized in proving some order conditions.

Vector-Matrix Singly Orthogonal Order Conditions

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

28/73

Combining each Standard Order Condition with an earlier one yields a "Singly Orthogonal Order Condition" (SOOC) from which constants have been eliminated:
A. Quadrature $\quad 5 \mathrm{~V}-4 \mathrm{~V} \quad \mathrm{~b}\left(5 C^{4}-4 C^{3}\right) e=0$
B. Linear Constant Coefficient

$$
b A q^{[4]}=0
$$

C. Linear Variable Coefficient

D. Non Linear

$$
\begin{aligned}
& \mathrm{bC}^{2} \mathrm{ACq}^{[3]}=0 \\
& \mathrm{~b}\left(\mathrm{ACe}^{\left[q^{[3]}\right.}\right)=0
\end{aligned}
$$

The "subquadratures" $q^{[k]}=\left(A C^{k-1}-C^{k} / k\right) e$, show that SOOCs constrain coefficient expressions by orthogonality.

How many SOOC.s of each type are there?

All but (1) can be expressed as a S.O. Order Condition.

How many SOOC.s of each type are there?

Nullspaces yield a new family of explicit
Runge-Kutta pairs

30/73

Order
Conditions
Rooted Trees
Types and Formats
SOOCs
" $(p, p)^{\prime}$
methods
Nullspaces
Orthogonal Matrices Mutually Orthogona Nullspaces

New RK pairs

$$
\begin{aligned}
& \text { Type } A \quad B \quad C \quad D \\
& \text { Order } p \quad N_{p} \\
& \text { (1) } \quad(1) \quad=(1) \quad\left(\Sigma b_{i}=1\right) \\
& 2 \\
& 1 \\
& =1 \Sigma b_{i}\left(1-2 c_{i}\right)=0 \\
& 3 \\
& 11 \\
& =2 \\
& 4 \\
& 1 \\
& 2 \\
& 5 \\
& 13 \\
& 41 \\
& 4=20 \\
& 7 \\
& -\frac{8}{\text { Totals }} \quad-\frac{1}{8} \quad-\frac{6}{21} \quad-\frac{57}{99}-\frac{51}{72}=\frac{115}{200} \quad-1
\end{aligned}
$$

Moreover, by suppressing (1) and 2, $\left(\Sigma N_{p}\right)-2$ order conditions can be written as SOOCs with neither b_{1} nor c_{1} present.

How many SOOC.s of each type are there?

Nullspaces yield a new family of explicit
Runge-Kutta pairs

31/73

Type A B C

$$
\begin{aligned}
& \text { Order p } \\
& \text { (1) } \\
& 2 \\
& \text { (1) } \\
& 1 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& \begin{array}{ccrrrll}
-\frac{8}{\text { Totals }} & -\frac{1}{8} & -\frac{6}{21} & -\frac{57}{99} & -\frac{115}{72} & =\frac{115}{200} & -1
\end{array}
\end{aligned}
$$

For (13,7-8) methods, we have seen that $q_{i}^{[k]}=0, k=2,3$ or $b_{i}=0$ otherwise imply conditions D collapse to conditions C. Next, we show how conditions A and B are satisfied.

There exist (p, p) methods for linear C.C. problems

Nullspaces
yield a new family of explicit Runge-Kutta pairs

32/73

Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p .

Proof.

(This skeleton will be expanded to derive (s, p) methods for more general problems.)

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
"(p,p)"methods

Nullspaces Orthogonal Matrices Mutually Orthogona Nullspaces

There exist (p, p) methods for linear C.C. problems

Nullspaces yield a new family of explicit Runge-Kutta pairs
$33 / 73$

Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p -stage methods of order p .

Proof.

(This skeleton will be expanded to derive (s, p) methods for more general problems.)
(a) For p distinct nodes c_{i}, there is a unique solution of

$$
\sum_{i=1}^{p} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1, . ., p .
$$

There exist (p, p) methods for linear C.C. problems

Nullspaces yield a new family of explicit Runge-Kutta pairs

34/73

Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s, p) methods for more general problems.)
(a) For p distinct nodes c_{i}, there is a unique solution of

$$
\sum_{i=1}^{p} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1, . ., p .
$$

(b) More generally, for p distinct nodes $c_{i}, L_{p+2-k, i}=$ $b A_{i}^{k-1}, i=p-k+1 . .1, k=1, . ., p$, uniquely satisfy

$$
\sum_{i=1}^{p+1-k} L_{p+2-k, i i_{i}^{j-1}}=\frac{(k-j)!}{k!}, j=1, . ., p-k .
$$

Coefficients $a_{i, j}$ are obtained using a back-substitution with $L_{p+2-i, j}$.

There exist (p, p) methods for linear C.C. problems

Nullspaces yield a new family of explicit Runge-Kutta pairs
$35 / 73$

Theorem 1: For non-homogeneous linear constant coefficient initial value problems, there exist p-stage methods of order p.

Proof.

(This skeleton will be expanded to derive (s, p) methods for more general problems.)
(a) For p distinct nodes c_{i}, there is a unique solution of

$$
\sum_{i=1}^{p} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1, . ., p .
$$

(b) More generally, for p distinct nodes $c_{i}, L_{p+2-k, i}=$ $b A_{i}^{k-1}, i=p-k+1 . .1, k=1, . ., p$, uniquely satisfy

$$
\sum_{i=1}^{p+1-k} L_{p+2-k, i i_{i}^{j-1}}=\frac{(k-j)!}{k!}, j=1, \ldots, p-k .
$$

Coefficients $a_{i, j}$ are obtained using a back-substitution with $L_{p+2-i, j}$. (a) and (b) satisfy all conditions of type A and B.

Back-substitution to get $a_{i, j}$

Nullspaces yield a new family of explicit Runge-Kutta pairs

36/73
$L_{i, j}$ form a triangular array:

$$
L=\begin{array}{c|cccccl}
c_{1} & & & & & & \\
c_{2} & L_{2,1} & & & & & \\
\cdot & \ldots & & & & & \\
c_{p}-1 & L_{p-1,1} & L_{p-1,2} & . . & L_{p-1, p-2} & & \\
c_{s} & L_{p, 1} & L_{p, 2} & . . & L_{p, p-2} & L_{p, p-1} & \\
\hline & L_{p+1,1} & L_{p+1,2} & . . & L_{p+1, p-2} & L_{p+1, p-1} & L_{p+1, p}
\end{array}
$$

and observing $b_{i}=L_{p+1, i}, a_{p, i}=\left(L_{p, i}-\Sigma b_{j} a_{j, i}\right) / b_{p}, \ldots$ we substitute up the back diagonals of L to get

$$
\begin{array}{c|ccccc}
c_{1} & & & \Downarrow & & \\
c_{2} & a_{2,1} & & & & \\
\cdot & \ldots & & & & \\
c_{p}-1 & a_{p-1,1} & a_{p-1,2} & . . & a_{p-1, p-2} & \nwarrow \\
c_{p} & a_{p, 1} & a_{p, 2} & . . & a_{p, p-2} & a_{p, p-1} \\
\hline & b_{1} & b_{2} & . . & b_{p-2} & b_{p-1}
\end{array} b_{p}
$$

Detail on this back-substitution:

Nullspaces yield a new family of explicit
Runge-Kutta pairs
$37 / 73$

In particular, with $b_{p}=L_{p+1, p}$ and $L_{q, q-1}$, we first
"back-compute" with $L_{q, q-1}$ from the lower-right corner:

c_{1}						
c_{2}	$L_{2,1}$					
\cdot	\ldots					
c_{p-1}	$L_{p-1,1}$	$L_{p-1,2}$..	$L_{p-1, s-2}$		
c_{p}	$L_{p, 1}$	$L_{p, 2}$..	$L_{p, p-2}$	$L_{p, p-1}$	
	$L_{p+1,1}$..	$L_{p+1, p-2}$	$L_{p+1, p-1}$	$L_{p+1, p}$

to get $a_{q, q-1}=\left(L_{q, q-1}\right) / L_{q+1, q}, q=p, . ., 1$,

Next diagonal of back-substitution:

Nullspaces yield a new family of explicit Runge-Kutta pairs

38/73

Introduction

Order

Conditions
Rooted Trees
Types and Formats SOOGs
" (p, p) "methods

Nullspaces Orthogonal Matrices Mutually Orthogonal Nullspaces

Next, with $L_{q, q-2}$, we back-compute up the next diagonal:

$$
\begin{aligned}
& \begin{array}{c|cccccl}
c_{1} & & & & & & \\
c_{2} & L_{2,1} & & & & & \\
\cdot & \ldots & & & & \\
c_{p-1} & L_{p-1,1} & . . & L_{p-1, p-3} & L_{p-1, p-2} & & \\
c_{p} & L_{p, 1} & L_{p, 2} & \ldots & L_{p, p-2} & L_{p, p-1} & \\
\hline & L_{p+1,1} & & . . & L_{p+1, p-2} & L_{p+1, p-1} & L_{p+1, p} \\
\text { to get } & & & & \Downarrow & &
\end{array} \\
& \begin{aligned}
a_{q, q-2}= & \left(L_{q, q-1}-L_{q+1, q-1} * a_{q-1, q-2}\right) / L_{q+1, q}, \quad q=p-1, . ., 1, \\
& c_{1} \\
& c_{2}
\end{aligned} a_{2,1} \\
& \begin{array}{c|ccccc}
c_{2} & a_{2,1} & \nwarrow & \nwarrow & & \\
\cdot & & \nwarrow & \nwarrow & & \\
c_{p-1} & \cdot & . . & a_{p-1, p-3} & a_{p-1, p-2} & \\
c_{p} & & \cdot & . . & a_{p, p-2} & a_{p, p-1} \\
\hline & \cdot & \cdot & . . & . & b_{p-1}
\end{array} b_{p}
\end{aligned}
$$

Next diagonal of back-substitution:

Nullspaces yield a new family of explicit
Runge-Kutta pairs

39/73

Next, with $L_{q, q-2}$, we back-compute up the next diagonal:

This gives a (p,p)-method for N.H. linear C.C. IVPs.

Here is an example of a restricted $(6,6)$ method

Nullspaces yield a new family of explicit
Runge-Kutta pairs

40/73

Introduction
Order
Conditions
Rooted Trees
Types and Formats soocs
" (p, p) " methods

Nullspaces Orthogonal Matrices Mutually Orthogonal NollSpaces

This is a 6 -stage method of order 6 for N.H. linear C.C. IVPs:

0						
$\frac{1}{4}$	$\frac{1}{4}$					
$\frac{1}{2}$	$-\frac{1}{2}$	1				
$\frac{3}{5}$	$-\frac{79}{19}$	$\frac{28}{25}$	$\frac{14}{125}$			
$\frac{3}{4}$	$\frac{1}{32}$	$\frac{15}{28}$	$-\frac{3}{8}$	$\frac{125}{224}$		
1	$\frac{4}{7}$	$-\frac{36}{49}$	$\frac{18}{7}$	$-\frac{125}{49}$	$\frac{8}{7}$	
	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	0	$\frac{16}{45}$	$\frac{7}{90}$

Here is an example of a restricted $(6,6)$ method

Nullspaces
yield a new family of explicit
Runge-Kutta pairs
$41 / 73$

This is a 6 -stage method of order 6 for N.H. linear C.C. IVPs:

0						
$\frac{1}{4}$	$\frac{1}{4}$					
$\frac{1}{2}$	$-\frac{1}{2}$	1				
$\frac{3}{5}$	$-\frac{79}{19}$	$\frac{28}{25}$	$\frac{14}{125}$			
$\frac{3}{4}$	$\frac{1}{32}$	$\frac{15}{28}$	$-\frac{3}{8}$	$\frac{125}{224}$		
1	$\frac{4}{7}$	$-\frac{36}{49}$	$\frac{18}{7}$	$-\frac{125}{49}$	$\frac{8}{7}$	
	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	0	$\frac{16}{45}$	$\frac{7}{90}$

To implement this method with stepsize control, it is possible to derive an embedded method of order 5 with one more stage.

Let's turn now to Nullspaces: $\beta_{i}=$ Left Nullspaces

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

Definition

For each i, we define β_{i} to be a matrix of s columns whose rows are left parts of SOOCs of products up to i coefficients.
β_{i} may contain b and other rows as appropriate.

Let's turn now to Nullspaces: $\beta_{i}=$ Left Nullspaces

Nullspaces
yield a new family of explicit Runge-Kutta pairs
$43 / 73$

Definition

For each i, we define β_{i} to be a matrix of s columns whose rows are left parts of SOOCs of products up to i coefficients.
β_{i} may contain b and other rows as appropriate. One possible choice for β_{4} is,

$$
\hat{\beta}_{4}=\left[\begin{array}{c}
b \\
b C \\
b C C \\
b C C C \\
b A A \\
b A A A
\end{array}\right]
$$

but this matrix could contain more rows such as bCCA.

Let's turn now to Nullspaces: $\beta_{i}=$ Left Nullspaces

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

44/73

Definition

For each i, we define β_{i} to be a matrix of s columns whose rows are left parts of SOOCs of products up to i coefficients.
β_{i} may contain b and other rows as appropriate. One possible choice for β_{4} is,

$$
\hat{\beta}_{4}=\left[\begin{array}{c}
b \\
b C \\
b C C \\
b C C C \\
b A A \\
b A A A
\end{array}\right]
$$

but this matrix could contain more rows such as bCCA.
We might use $\bar{\beta}_{i}$ to designate a maximal number of different rows.

$\alpha_{j}=$ Right Nullspaces

Nullspaces
yield a new family of explicit Runge-Kutta pairs
$45 / 73$

Introduction

Definition

Analogously, for each j, we define α_{j} to be a matrix of s rows whose columns are right parts of SOOCs of products up to j coefficients,
and we use $\bar{\alpha}_{j}$ to designate a maximal number of different columns.
α_{j} will not contain $\mathrm{e}=[1, \ldots, 1]^{t}$, but could contain $(I-2 C) \mathrm{e}$ and for $j>1,\left(2 C-3 C^{2}\right)$ e and/or $q^{[2]}$.

$\alpha_{j}=$ Right Nullspaces

Nullspaces yield a new family of explicit Runge-Kutta pairs

46/73

Definition

Analogously, for each j, we define α_{j} to be a matrix of s rows whose columns are right parts of SOOCs of products up to j coefficients,
and we use $\bar{\alpha}_{j}$ to designate a maximal number of different columns.
α_{j} will not contain $\mathrm{e}=[1, \ldots, 1]^{t}$, but could contain $(I-2 C) \mathrm{e}$ and for $j>1,\left(2 C-3 C^{2}\right)$ e and/or $q^{[2]}$.

We'll see an example of α_{2} soon. An example of α_{3} is

$$
\hat{\alpha}_{3}=\left[\left(2 C-3 C^{2}\right) e, q^{[2]},\left(3 C^{2}-4 C^{3}\right) e, A q^{[2]}, q^{[3]}\right] .
$$

We observe now that any matrices β_{i} and α_{j} are mutually orthogonal whenever $1<i+j \leq p$. Hence, each contains vectors in the Nullspace of the other.

The Nullspace Theorem

Nullspaces yield a new family of explicit Runge-Kutta pairs

47/73

To derive methods, we might try to characterize coefficients of a method that possesses such orthogonality properties. To this end, I have studied the orthogonality properties of some new methods found using Test21. Eventually, I found that matrix A of such methods has a very special two-parameter partitioning.
From these definitions, we have the following:
Theorem 2: For an s-stage method of order p, it is necessary that

$$
\beta_{i} . \alpha_{j}=0, \quad 1<i+j \leq p
$$

Nullspaces for low order Runge-Kutta methods

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

48/73

Introduction

Order

Conditions
Rooted Trees soocs
" (p, p) "
methods
Nullspaces

As an example, consider three-stage methods of general order three:

$$
\begin{array}{ll}
\text { 1. } \widetilde{\mathrm{Q}}^{[1]}=\sum_{i=1}^{3} b_{i}-1 & =0 \\
\text { 2. } \widetilde{\mathrm{Q}}^{[1]}-2 \widetilde{\mathrm{Q}}^{[2]}=\sum_{i=1}^{3} \mathrm{~b}_{\mathrm{i}}\left(1-2 c_{i}\right) & =0 \\
\text { 3. } 2 \widetilde{\mathrm{Q}}^{[2]}-3 \widetilde{\mathrm{Q}}^{[3]}=\left[\begin{array}{ll}
\mathrm{b}_{2} & \mathrm{~b}_{3}
\end{array}\right]\left[\begin{array}{l}
c_{2}\left(2-3 c_{2}\right) \\
c_{3}\left(2-3 c_{3}\right)
\end{array}\right] & =0 \\
\text { 4. b. } \widetilde{\mathrm{q}}^{[2]}=0 &
\end{array}
$$

Four solutions exist (see Butcher, 2021, p. 63)

Nullspaces for low order Runge-Kutta methods

Nullspaces
yield a new family of explicit Runge-Kutta pairs

49/73

As an example, consider three-stage methods of general order three:

$$
\begin{array}{ll}
\text { 1. } \widetilde{\mathrm{Q}}^{[1]}=\sum_{i=1}^{3} b_{i}-1 & =0 \\
\text { 2. } \widetilde{\mathrm{Q}}^{[1]}-2 \widetilde{\mathrm{Q}}^{[2]}=\sum_{i=1}^{3} \mathrm{~b}_{\mathrm{i}}\left(1-2 c_{i}\right) & =0 \\
\text { 3. } 2 \widetilde{\mathrm{Q}}^{[2]}-3 \widetilde{\mathrm{Q}}^{[3]}=\left[\begin{array}{ll}
\mathrm{b}_{2} & \mathrm{~b}_{3}
\end{array}\right]\left[\begin{array}{l}
c_{2}\left(2-3 c_{2}\right) \\
c_{3}\left(2-3 c_{3}\right)
\end{array}\right] & =0 \\
\text { 4. b. } \widetilde{\mathrm{q}}^{[2]}=0 &
\end{array}
$$

Four solutions exist (see Butcher, 2021, p. 63)

$$
\begin{aligned}
& \text { We observe that } \\
& \beta_{1}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] \text { and } \alpha_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1-2 c_{2} & c_{2}\left(2-3 c_{2}\right) & q_{2}^{[2]} \\
1-3 c_{3} & c_{3}\left(2-3 c_{3}\right) & q_{3}^{[2]}
\end{array}\right]
\end{aligned}
$$

these are orthogonal and $\mathrm{b} \neq 0$, so that α_{2} has rank 2 . Hence, α_{2} contains a row or column of zeros, or else has linear dependence, and this leads to the four solutions that exist.

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit
Runge-Kutta pairs

50/73

- The 12-stage method of order 8 is derived first:

■ For this, split an $(8,8)$ method for N.H. C.C. linear problems after column 1, by moving values $L_{p+2-k, j}, j=2 . .8$ to $L_{s+2-k, j}, j=6$..s for $s=12$, and then insert new values $\mathrm{L}_{\mathrm{s}+2-\mathrm{k}, \mathrm{j}}=0 \quad$ (i.e. $\mathrm{b}_{\mathrm{j}}=\mathrm{L}_{13, \mathrm{j}}=$ $\left.0, b A_{j}=L_{12, j}=0, . . j=2,3,4,5.\right)$

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit Runge-Kutta pairs

51/73

- The 12-stage method of order 8 is derived first:

■ For this, split an $(8,8)$ method for N.H. C.C. linear problems after column 1, by moving values $L_{p+2-k, j}, j=2 . .8$ to $L_{s+2-k, j}, j=6$..s for $s=12$, and then insert new values $\mathrm{L}_{\mathrm{s}+2-\mathrm{k}, \mathrm{j}}=0 \quad$ (i.e. $\mathrm{b}_{\mathrm{j}}=\mathrm{L}_{13, \mathrm{j}}=$ $\left.0, b A_{j}=L_{12, j}=0, . . j=2,3,4,5.\right)$

- On stages 2..9, impose stage-order conditions $q^{[k]}=0$, and additional constraints on nodes and coefficients so that remaining conditions of type C are satisfied.

■ Assign $b_{i}=L_{13, i}, i=1 . .12$, and after computing coefficients from stages 2 to 9 , use a back substitution algorithm on $L_{s+2-k, j}$ to compute $a_{i, j}, \mathrm{j}=\mathrm{i}-1 . .1, \mathrm{i}=12,11,10$.

What is known about (13,7-8) Runge-Kutta pairs?

Nullspaces yield a new family of explicit Runge-Kutta pairs

52/73

- The 12-stage method of order 8 is derived first:

■ For this, split an $(8,8)$ method for N.H. C.C. linear problems after column 1, by moving values $L_{p+2-k, j}, j=2 . .8$ to $L_{s+2-k, j}, j=6$..s for $s=12$, and then insert new values $\mathrm{L}_{\mathrm{s}+2-\mathrm{k}, \mathrm{j}}=0 \quad$ (i.e. $\mathrm{b}_{\mathrm{j}}=\mathrm{L}_{13, \mathrm{j}}=$ $\left.0, b A_{j}=L_{12, j}=0, . . j=2,3,4,5.\right)$

- On stages 2..9, impose stage-order conditions $q^{[k]}=0$, and additional constraints on nodes and coefficients so that remaining conditions of type C are satisfied.
- Assign $b_{i}=L_{13, i}, i=1 . .12$, and after computing coefficients from stages 2 to 9 , use a back substitution algorithm on $L_{s+2-k, j}$ to compute $a_{i, j}, \mathrm{j}=\mathrm{i}-1 . .1, \mathrm{i}=12,11,10$.
- Then, the embedded method of order 7 is obtained from similar values $\hat{L}_{i, j}$ using another back-substitution.

Properties of the New Methods

Nullspaces yield a new family of explicit
Runge-Kutta pairs

On computation with some new methods of order 8 , I found

- $\bar{\beta}_{4}$ is 18×12, has four columns of zeros, and rank $=6$.
- $\bar{\beta}_{4}$ is spanned by the rows of $\hat{\beta}_{4}$. (Linear independence is needed.)

Properties of the New Methods

Nullspaces yield a new family of explicit
Runge-Kutta pairs

54/73

On computation with some new methods of order 8 , I found

- $\bar{\beta}_{4}$ is 18×12, has four columns of zeros, and rank $=6$.
- $\bar{\beta}_{4}$ is spanned by the rows of $\hat{\beta}_{4}$. (Linear independence is needed.)
- $P_{4}(C)=I-20 C+90 C^{2}-140 C^{3}+70 C^{4}$ and $q^{[4]}$ are Nullvectors of $\bar{\beta}_{4}$. Hence, Nullspace $\left(\bar{\beta}_{4}\right)$ is spanned by $\left\{e_{i}, i=2 . .5, P_{4}(C), q^{[4]}\right\}$.
- If $c_{6}=1 / 2$, then Rank (Columns 6 to 12 of $\bar{\beta}_{4}$) $=5$, and $\mathrm{q}^{[4]}$ is a Nullvector of this submatrix.

Properties of the New Methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

55/73

On computation with some new methods of order 8 , I found

- $\bar{\beta}_{4}$ is 18×12, has four columns of zeros, and rank $=6$.
- $\bar{\beta}_{4}$ is spanned by the rows of $\hat{\beta}_{4}$. (Linear independence is needed.)
- $P_{4}(C)=I-20 C+90 C^{2}-140 C^{3}+70 C^{4}$ and $q^{[4]}$ are Nullvectors of $\bar{\beta}_{4}$. Hence, Nullspace ($\bar{\beta}_{4}$) is spanned by $\left\{e_{i}, i=2 . .5, P_{4}(C), q^{[4]}\right\}$.
- If $c_{6}=1 / 2$, then Rank (Columns 6 to 12 of $\bar{\beta}_{4}$) $=5$, and $\mathrm{q}^{[4]}$ is a Nullvector of this submatrix.

■ Rank of $\alpha_{4}=5$. (1 expected this rank to be six.)

- Non-trivial columns of α_{4} are $\mathrm{P}_{4}(\mathrm{C})$ and $\left.\mathrm{q}^{[4]}\right\}$.

Properties of the New Methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

56/73

On computation with some new methods of order 8 , I found

- $\bar{\beta}_{4}$ is 18×12, has four columns of zeros, and rank $=6$.
- $\bar{\beta}_{4}$ is spanned by the rows of $\hat{\beta}_{4}$. (Linear independence is needed.)
- $P_{4}(C)=I-20 C+90 C^{2}-140 C^{3}+70 C^{4}$ and $q^{[4]}$ are Nullvectors of $\bar{\beta}_{4}$. Hence, Nullspace $\left(\bar{\beta}_{4}\right)$ is spanned by $\left\{e_{i}, i=2 . .5, P_{4}(C), q^{[4]}\right\}$.
- If $c_{6}=1 / 2$, then Rank (Columns 6 to 12 of $\bar{\beta}_{4}$) $=5$, and $\mathrm{q}^{[4]}$ is a Nullvector of this submatrix.

■ Rank of $\alpha_{4}=5$. (I expected this rank to be six.)

- Non-trivial columns of α_{4} are $\mathrm{P}_{4}(\mathrm{C})$ and $\left.\mathrm{q}^{[4]}\right\}$.

Observe that $\mathrm{q}^{[4]}=0$ used in known $(12,8)$ methods is relaxed so that Ihis vector lies in the Nullspace of $\bar{\beta}_{4}$.

Outline of New $(12,8)$ Methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

57/73

Almost Theorem 3: Compute for a 12-stage method:
112 nodes with $c_{1}, c_{6}, . ., c_{12}$ distinct confined by $c_{3}=2 c_{4} / 3, \quad c_{5}=\left(4 c_{4}-3 c_{6}\right) /\left(c_{6}\left(6 c_{4}-4 c_{6}\right)\right)$, and for $\pi(c)=c\left(c-c_{6}\right)\left(c-c_{7}\right)\left(c-c_{8}\right), c_{9}$ is chosen so that

$$
\begin{aligned}
& {\left[\int_{0}^{1} \pi(c) \frac{(c-1)^{2}}{2!} d c\right]\left[\int_{0}^{1} \pi(c)\left(c-c_{9}\right) \frac{(c-1)^{2}}{2!} d c\right] } \\
= & {\left[\int_{0}^{1} \pi(c) \frac{(c-1)^{3}}{3!} d c\right]\left[\int_{0}^{1} \pi(c)\left(c-c_{9}\right) \frac{(c-1)}{1!} d c\right] . }
\end{aligned}
$$

2. Choose stages 2 to 9 so that $q_{i}^{[k]}=0, k=1,2,3$.

3 Constrain stage 9 so that $\sum_{i} b_{i} c_{i}^{2} a_{i, j}=0, j=4,5$.
4 Choose remaining parameters so $\bar{\beta}_{4}$ is orthogonal to $q^{[4]}$.
$5 L_{i, j}$ (with $L_{i, j}=0, j=2.5$) and back-substitution, for the weights b_{i} and stages 12 to 10 .

Then, the method has order 8.

Partial proof

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

Proof.

Conditions A and B follow from $q^{[k]}, k=1,2,3$, and $L_{i, j}$. Also, values for $q_{i}^{[k]}$ force Conditions D to collapse to Conditions C. To establish Conditions C, formulas among A, C, b are used:

- $L_{i, j}$ with $i=13,12$ imply $b A=b(I-C)$
- post-multiplication of $\mathrm{bA}-\mathrm{b}(\mathrm{I}-\mathrm{C})$ by $\mathrm{A}, \mathrm{C}, \mathrm{AA}, \mathrm{CC}, \mathrm{AC}, \mathrm{CA}$
- $b C C A * q^{[4]}=0$

These imply bAC, bCA, bCAA, bACC lie in the rowspace of $\hat{\beta}_{4}$; bAAC, bCAC, bACA, added to linear combinations of $C^{k}, k=0 . .4$ can be shown to be orthogonal to $q^{[4]}$ by direct computation. These imply most of Conditions C hold.

This will leave one arbitrary coefficient in row 8 of A (selected as $a_{8,7}$).As well, under further constraints, $a_{7,6}$ is arbitrary.

Algorithm for Known $(12,8)$ methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

59/73

■ Stage 2: $q_{2}^{[1]}=0 \Longrightarrow a_{2,1}=c_{2}$.

- Stage 3: $q_{3}^{[1]}=q_{3}^{[2]}=0$.
- Stage 4: $a_{4,2}=0, q_{4}^{[k]}=0, k=1,2,3$.
- Stage 5: $a_{5,2}=0, q_{5}^{[k]}=0, k=1,2,3$.
- Stage 6: $a_{6,2}=a_{6,3}=0, q_{6}^{[k]}=0, k=1,2,3,4$.
- Stage 7: $a_{7,2}=a_{7,3}=0, q_{7}^{[k]}=0, k=1,2,3,4$.
- Stage 8: $a_{8,2}=a_{8,3}=0, a_{8,4}, q_{8}^{[k]}=0, k=1,2,3,4$.
- Stage 9: $a_{9,2}=a_{9,3}:=0, q_{9}^{[k]}=0, k=1,2,3,4$.
$L_{13,10}\left(c_{10}-c_{12}\right)\left(c_{10}-c_{11}\right) \sum_{j=k+1}^{9} L_{11, j} a_{j, k}$
$-L_{11,10} \sum_{j=k+1}^{9} L_{13, j}\left(c_{j}-c_{12}\right)\left(c_{j}-c_{11}\right) a_{j, k}=0, \quad k=4,5$.
■ Stages $12 . .10$ and b_{i} : Observe $b_{i}=L_{13, i}, i=1 . .12$, and use back-substitution on $L_{14-k, i}, k=2 . .4, i=13-k, . ., 1$ to get $a_{14-k, i}, \quad k=2 . .4, i=13-k . .1$.

Algorithm for Known $(12,8)$ methods

Nullspaces yield a new family of explicit Runge-Kutta pairs

■ Stage 2: $q_{2}^{[1]}=0 \Longrightarrow a_{2,1}=c_{2}$.
$\mathrm{SO}=1$

- Stage 3: $q_{3}^{[1]}=q_{3}^{[2]}=0$. $\mathrm{SO}=2$
- Stage 4: $a_{4,2}=0, q_{4}^{[k]}=0, k=1,2,3$.
$\mathrm{SO}=3$
- Stage 5: $a_{5,2}=0, q_{5}^{[k]}=0, k=1,2,3$. $\mathrm{SO}=3$
- Stage 6: $a_{6,2}=a_{6,3}=0, q_{6}^{[k]}=0, k=1,2,3,4 . \quad \mathrm{SO}=4$
- Stage 7: $a_{7,2}=a_{7,3}=0, q_{7}^{[k]}=0, k=1,2,3,4 . \quad \mathrm{SO}=4$
- Stage 8: $a_{8,2}=a_{8,3}=0, a_{8,4}, q_{8}^{[k]}=0, k=1,2,3,4 . S O=4$

■ Stage 9: $a_{9,2}=a_{9,3}:=0, q_{9}^{[k]}=0, k=1,2,3,4 . \quad \mathrm{SO}=4$ $L_{13,10}\left(c_{10}-c_{12}\right)\left(c_{10}-c_{11}\right) \sum_{j=k+1}^{9} L_{11, j} a_{j, k}$ $-L_{11,10} \sum_{j=k+1}^{9} L_{13, j}\left(c_{j}-c_{12}\right)\left(c_{j}-c_{11}\right) a_{j, k}=0, \quad k=4,5$.
■ Stages $12 . .10$ and b_{i} : Observe $b_{i}=L_{13, i}, i=1 . .12$, and use back-substitution on $L_{14-k, i}, k=2 . .4, i=13-k, . ., 1$ to get $a_{14-k, i}, \quad k=2 . .4, i=13-k . .1$.

Algorithm for New $(12,8)$ methods - reduce SO

Nullspaces yield a new family of explicit Runge-Kutta pairs

- Stage 2: $q_{2}^{[1]}=0 \Longrightarrow a_{2,1}=c_{2} . \quad S O=1$
- Stage 3: $q_{3}^{[1]}=q_{3}^{[2]}=0$. $\mathrm{SO}=2$
- Stage 4: $a_{4,2}=0, q_{4}^{[k]}=0, k=1,2,3 . \quad S O=3$
- Stage 5: $a_{5,2}=0, q_{5}^{[k]}=0, k=1,2,3 . \quad S O=3$
- Stage 6: $a_{6,2}=a_{6,3}=0, q_{6}^{[k]}=0, k=1,2,3,4 . \quad \mathrm{SO}=4$

■ Stage 7: $a_{7,2}=a_{7,3}=0, a_{7,6}, q_{7}^{[k]}=0, k=1,2,3>S O=3$

- Stage 8: $a_{8,2}=a_{8,3}=0, a_{8,7}, q_{8}^{[k]}=0, k=1,2,3>S O=3$
- Stage 9: $a_{9,2}=a_{9,3}:=0, q_{9}^{[k]}=0, k=1,2,3 \quad>S O=3$ $L_{13,10}\left(c_{10}-c_{12}\right)\left(c_{10}-c_{11}\right) \sum_{j=k+1}^{9} L_{11, j} a_{j, k}$ $-L_{11,10} \sum_{j=k+1}^{9} L_{13, j}\left(c_{j}-c_{12}\right)\left(c_{j}-c_{11}\right) a_{j, k}=0, \quad k=4,5$.
■ Stages $12 . .10$ and b_{i} : Observe $b_{i}=L_{13, i}, i=1 . .12$, and use back-substitution on $L_{14-k, i}, k=2 . .4, i=13-k, . ., 1$ to get $a_{14-k, i}, \quad k=2 . .4, i=13-k . .1$.
But to get order 8 more is needed to replace $q^{[4]}=0$.

Structure of New Pairs

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

62/73

Order

Conditions
Rooted Trees soocs
" (p, p) "
methods
Nuilspaces
Orthogonal Matrices
Mutually Orthogonal Nullspaces

Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_{6}=1 / 2$, and any other value of $a_{7,6}=\widehat{a_{76}}$, and possibly a different value of $a_{8,7}=\widehat{a_{87}}$, define four vectors by

■ R1 is the solution of $a_{7,2}=a_{7,3}=0, a_{7,6}=\widehat{a_{76}}$, $q_{7}^{[k]}=0, k=1,2,3$.

- V 1 is the solution of $V 1_{7}=1$, and $\hat{\beta}_{4} . V 1=0$.

Structure of New Pairs

Nullspaces yield a new family of explicit
Runge-Kutta pairs
$63 / 73$
Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_{6}=1 / 2$, and any other value of $a_{7,6}=\widehat{a_{76}}$, and possibly a different value of $a_{8,7}=\widehat{a_{87}}$, define four vectors by

■ R1 is the solution of $a_{7,2}=a_{7,3}=0, a_{7,6}=\widehat{a_{76}}$, $q_{7}^{[k]}=0, k=1,2,3$.

- V 1 is the solution of $V 1_{7}=1$, and $\hat{\beta}_{4} . V 1=0$.

■ R 2 is the solution of $a_{8,2}=a_{8,3}=0, a_{8,7}=\widehat{a_{87}}$, $q_{8}^{[k]}=0, k=1,2,3, q_{8}^{[4]}=V 1_{8} * q_{7}^{[4]} / V 1_{7}$.
■ V 2 is the solution of $V 2_{8}=1$, and $\hat{\beta}_{3} . V 2=0$.

Structure of New Pairs

Nullspaces yield a new family of explicit Runge-Kutta pairs
$64 / 73$

Theorem 4: Assume $\{b, \hat{b}, A, c\}$, yield a traditional (13,7-8) pair. For $c_{6}=1 / 2$, and any other value of $a_{7,6}=\widehat{a_{76}}$, and possibly a different value of $a_{8,7}=\widehat{a_{87}}$, define four vectors by

■ R1 is the solution of $a_{7,2}=a_{7,3}=0, a_{7,6}=\widehat{a_{76}}$,

$$
q_{7}^{[k]}=0, k=1,2,3 .
$$

- V 1 is the solution of $V 1_{7}=1$, and $\hat{\beta}_{4} . V 1=0$.

■ R2 is the solution of $a_{8,2}=a_{8,3}=0, a_{8,7}=\widehat{a_{87}}$,

$$
q_{8}^{[k]}=0, k=1,2,3, q_{8}^{[4]}=V 1_{8} * q_{7}^{[4]} / V 1_{7}
$$

- V 2 is the solution of $V 2_{8}=1$, and $\hat{\beta}_{3} . V 2=0$.

Then for each $\widehat{a_{76}}$ and $\widehat{a_{87}}$, and

$$
\widehat{\mathrm{A}}=\mathrm{A}+\mathrm{V} 1 . \mathrm{R} 1 \widehat{\mathrm{a}_{76}}+\mathrm{V} 2 . \mathrm{R} 2 \widehat{\mathrm{a}} 87,
$$

(Vi.Ri is an outer product) $\{\mathrm{b}, \hat{\mathrm{b}}, \hat{\mathrm{A}}, \mathrm{c}\}$ yields a new $(13,7-8)$ pair.

Structure of New Pairs (Continued)

Nullspaces
yield a new family of explicit Runge-Kutta pairs
$65 / 73$

Proof.

For $c_{6}=1 / 2$, the matrix for V 1 has rank 5 , so V 1 is a right Nullvector of $\bar{\beta}_{4}$. Also, R1 is a left Nullvector of $\bar{\alpha}_{4}$. The matrix for V 2 has rank 4 , and so V 2 is a right Nullvector of $\bar{\beta}_{3}$. As well, R2 is a left Nullvector of $\bar{\alpha}_{3}$. These seem sufficient to prove that coefficients $\{b, b h, \hat{A}, c\}$ yield a $(13,7-8)$ pair.

Structure of New Pairs (Continued)

Nullspaces
yield a new family of explicit Runge-Kutta pairs

66/73

Proof.

For $c_{6}=1 / 2$, the matrix for V 1 has rank 5 , so V 1 is a right Nullvector of $\bar{\beta}_{4}$. Also, R1 is a left Nullvector of $\bar{\alpha}_{4}$. The matrix for V 2 has rank 4, and so V 2 is a right Nullvector of $\bar{\beta}_{3}$. As well, R2 is a left Nullvector of $\bar{\alpha}_{3}$. These seem sufficient to prove that coefficients $\{b, b h, \hat{A}, c\}$ yield a (13,7-8) pair. \square

For each traditional (13,7-8) pair with $c_{6}=1 / 2$ and a value of $a_{8,7}$, this yields a new family of such pairs in the parameter $a_{7,6}$. While we have exchanged the freedom to choose an arbitrary value for c_{6} to make $a_{7,6}$ a parameter, we have derived a new family of pairs.

Structure of New Pairs (Continued)

Nullspaces
yield a new family of explicit Runge-Kutta pairs

67/73

Proof.

For $c_{6}=1 / 2$, the matrix for V 1 has rank 5 , so V 1 is a right Nullvector of $\bar{\beta}_{4}$. Also, R1 is a left Nullvector of $\bar{\alpha}_{4}$. The matrix for V 2 has rank 4, and so V 2 is a right Nullvector of $\bar{\beta}_{3}$. As well, R2 is a left Nullvector of $\bar{\alpha}_{3}$. These seem sufficient to prove that coefficients $\{b, b h, \hat{A}, c\}$ yield a (13,7-8) pair. \square

For each traditional (13,7-8) pair with $c_{6}=1 / 2$ and a value of $a_{8,7}$, this yields a new family of such pairs in the parameter $a_{7,6}$. While we have exchanged the freedom to choose an arbitrary value for c_{6} to make $a_{7,6}$ a parameter, we have derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for the traditional pairs. When $c_{6}=1 / 2$, I have used this code to optimize over the range of arbitrary nodes, $a_{7,6}$ and $a_{8,7}$.

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs
$68 / 73$

Criteria accepted for determining good pairs usually requires that the 2 -norm of the Local Truncation Error is small for the propagating method.

Pair	Nodes	$L_{T E}$	D	Stab.
$E E-J H V(1978)$	$0,1 / 4,1 / 12$	$3.82 E-05$	5.98	$(-5.07,0]$
Fam $-J H V(1979)$	$0,2 / 27,1 / 9$	$9.82 e-06$	15.64	$(-5.00,0]$
$H N W(D P)(1991)$	$0, .158, .237$	$2.24 E-06$	43.48	$(-5.49,0]$
SS (1993)	$0,19 / 250,1 / 10$	$1.08 E-06$	27.30	$(-5.68,0]$
MAPLE (2000)	$0, .054, .102$	$1.55 E-06$	20.18	$(-5.84,0]$
Eff. $-J H V(2010)$	$0,1 / 20,341 / 3200$	$2.82 E-07$	123.37	$(-5.86,0]$

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs

69/73

Criteria accepted for determining good pairs usually requires that the 2-norm of the Local Truncation Error is small for the propagating method.

Pair	Nodes	LTE $_{2}$	D	Stab.
$E E-J H V(1978)$	$0,1 / 4,1 / 12$	$3.82 E-05$	5.98	$(-5.07,0]$
Fam $-J H V(1979)$	$0,2 / 27,1 / 9$	$9.82 e-06$	15.64	$(-5.00,0]$
$H N W(D P)(1991)$	$0, .158, .237$	$2.24 E-06$	43.48	$(-5.49,0]$
SS (1993)	$0,19 / 250,1 / 10$	$1.08 E-06$	27.30	$(-5.68,0]$
MAPLE (2000)	$0, .054, .102$	$1.55 E-06$	20.18	$(-5.84,0]$
Eff. $-J H V(2010)$	$0,1 / 20,341 / 3200$	$2.82 E-07$	123.37	$(-5.86,0]$
Improvement	(2023)	$2.73 E-07$	123.75	$(-5.81,0]$

Are there efficient pairs within the new family?

Nullspaces yield a new family of explicit Runge-Kutta pairs

70/73

Criteria accepted for determining good pairs usually requires that the 2-norm of the Local Truncation Error is small for the propagating method.

\quad Pair	Nodes	LTE $_{2}$	D	Stab.
$E E-J H V(1978)$	$0,1 / 4,1 / 12$	$3.82 E-05$	5.98	$(-5.07,0]$
Fam $-J H V(1979)$	$0,2 / 27,1 / 9$	$9.82 e-06$	15.64	$(-5.00,0]$
$H N W(D P)(1991)$	$0, .158, .237$	$2.24 E-06$	43.48	$(-5.49,0]$
SS (1993)	$0,19 / 250,1 / 10$	$1.08 E-06$	27.30	$(-5.68,0]$
MAPLE (2000)	$0, .054, .102$	$1.55 E-06$	20.18	$(-5.84,0]$
Eff. - JHV (2010)	$0,1 / 20,341 / 3200$	$2.82 E-07$	123.37	$(-5.86,0]$
Improvement	(2023)	$2.73 E-07$	123.75	$(-5.81,0]$
New - JHV (2023)	$0,1 / 1000,1 / 6$	$3.67 E-06$	48.52	$(-4.29,0]$

What have we learned?

Nullspaces
yield a new family of explicit
Runge-Kutta pairs
$71 / 73$

1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
2 That there exist undiscovered parametric families of explicit R-K pairs for general IVPs.
3 Algorithms for deriving these new methods.
4 Better methods have been known for over a decade.

What have we learned?

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

72/73

1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
2 That there exist undiscovered parametric families of explicit R-K pairs for general IVPs.
3 Algorithms for deriving these new methods.
4 Better methods have been known for over a decade.

What else can we study?

1 A more complete proof of order of the new pairs.
2 Why is $\operatorname{Rank}\left(\alpha_{4}\right)$ only equal to 5 ?
3 Explore orthogonality properties of lower and higher order explicit methods.
4 Can these tools be used for deriving General Linear Methods?

What have we learned?

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

73/73

1 An algorithm for deriving methods for N.H. linear C.C. IVPs.
2 That there exist undiscovered parametric families of explicit R-K pairs for general IVPs.
3 Algorithms for deriving these new methods.
4 Better methods have been known for over a decade.

What else can we study?

1 A more complete proof of order of the new pairs.
2 Why is $\operatorname{Rank}\left(\alpha_{4}\right)$ only equal to 5 ?
3 Explore orthogonality properties of lower and higher order explicit methods.
4 Can these tools be used for deriving General Linear Methods?

Thank you for listening

But wait! I wanted to mention one more thing...

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

74/73

This week Paul Muir and Ray Spitiri provided me with a link to an Undergraduate Thesis by David K. Zhang. This thesis may be found at

https://arxiv.org/abs/1911.00318

The thesis discusses the use of Machine Learning that David K. Zhang utilized to obtain approximate coefficients for some (16-10) methods. John has been searching for such methods for over 40 years. For two methods displayed in the Appendices, coefficients are recorded in 70 decimal digit floating point form.

A challenge

Nullspaces
yield a new family of explicit
Runge-Kutta pairs

75/73

I have applied a MAPLE version of the code John and I wrote in 1970 to find that coefficients of the first method displayed satisfies the order conditions to 68 digits.

I have also applied a few of the tools I have described above to show for this first method that β_{4} is orthogonal to each of $\mathrm{q}^{[4]}, \mathrm{q}^{[5]}, \mathrm{q}^{[6]}$, and as well to each of three polynomials of degrees 4,5 , and 6 that are analogs of $P_{4}(C)$ defined above. It might be hoped that such tools may lead to a precise characterization of such methods having exact coefficients.

A challenge

 in 1970 to find that coefficients of the first method displayed satisfies the order conditions to 68 digits.I have also applied a few of the tools I have described above to show for this first method that β_{4} is orthogonal to each of $\mathrm{q}^{[4]}, \mathrm{q}^{[5]}, \mathrm{q}^{[6]}$, and as well to each of three polynomials of degrees 4,5 , and 6 that are analogs of $P_{4}(C)$ defined above. It might be hoped that such tools may lead to a precise characterization of such methods having exact coefficients.

Perhaps some of you may wish to do some studies of this. I also hope that I have given John a new perspective on this problem he has studied for so many years.

HAPPY BIRTHDAY JOHN

