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Abstract

Recently, John Butcher developed a MAPLE code 'Test 21’ to
solve the order conditions directly. This code was applied to
derive 13-stage pairs of orders 7 and 8 and unexpectedly,
revealed the existence of some previously unknown pairs. This
talk reports formulas for directly deriving such a new
parametric family.
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Nullspaces For a vector initial value problem in ordinary differential
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(el i equations:
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y= f(X7y)7 Y(XO) = Yo,
an s—stage explicit Runge—Kutta pair is defined for a step of h

as,

Y[’] =yp_1+ hx* Z};}a,-d-f(x,,_l + C,'h,YU])7 i=1,..,s,

Introduction
Y = Yn_1+ hx T3 bif (xo_1 + h, YT, n=1,..,
Yo =Yn_1+ h* X5 bif (xo_1 + h, Y1), n=1,..,

m where {b;, I;,-, aj j, ci} are coefficients of the pair,
® y, approximates y(x,) to order p,

m the difference y, — y, is an order p — 1 estimate of the
local truncation error that can be used for stepsize control.
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m 1963: Butcher: Rooted trees yield Order Conditions
m New Explicit Methods:

1963-64: Butcher: methods of orders 6 and 7

1967-68: Fehlberg derived pairs of orders 6 to 9
1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
1975: Curtis: p=10, s=18 methods.

1974-78: JHV improved pairs of orders 6 to 9

1978: Hairer: derived p=10, s=17 methods
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Since these derivations, there have been many contributions to
searching and finding new methods and pairs for constructing
and maintaining software to solve real IVPs.
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1963: Butcher: Rooted trees yield Order Conditions

New Explicit Methods:

m 1963-64: Butcher: methods of orders 6 and 7

1967-68: Fehlberg derived pairs of orders 6 to 9
1968-72: Cooper and JHV, Curtis: p=8, s=11 methods.
1975: Curtis: p=10, s=18 methods.

1974-78: JHV improved pairs of orders 6 to 9

1978: Hairer: derived p=10, s=17 methods
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What other (explicit Runge—Kutta) methods exist?



Motivation

Nullspaces

el & s m This is a study to formulate some specific new pairs.
amily of
explicit

Runge—Kutta
pairs

Introduction



Motivation

Nullspaces

vicdlagned m This is a study to formulate some specific new pairs.
family of

explicit

Runge—Kutta m Better methods would lead to improvements in
pairs software for IVPs - hence, there has since been a
search for better methods.

Introduction



Motivation

Nullspaces

¥ild a new m This is a study to formulate some specific new pairs.

Runzgiiyﬁizm m Better methods would lead to improvements in software
pairs for IVPs - hence, there has since been a search for better
methods.

m In 2021, John Butcher developed the MAPLE
program 'Test21’ which solves order conditions

introduction directly to obtain some (explicit) Runge—Kutta

methods.




Motivation

Nullspaces . “pe .
yield a new m This is a study to formulate some specific new pairs.
family of

explicit m Better methods would lead to improvements in software

Rungpeairfm for IVPs - hence, there has since been a search for better
methods.

m In 2021, John Butcher developed the MAPLE program
"Test21" which solves order conditions directly to obtain
some (explicit) Runge—Kutta methods.

m Some new R—K pairs were found on applying
"Test21’.

Introduction



Motivation

Nullspaces R ‘e .
yield a new m This is a study to formulate some specific new pairs.
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o Sttt m Better methods would lead to improvements in software
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pairs for IVPs - hence, there has since been a search for better
methods.

m In 2021, John Butcher developed the MAPLE program
"Test21" which solves order conditions directly to obtain
some (explicit) Runge—Kutta methods.

m Some new R—K pairs were found on applying
"Test21'.

m These new pairs were members of a parametric family.

m Knowledge of the structure of these new methods may
yield more methods in this family.

m The structure for these new methods may lead to other
types of new methods.

m Does this new family contain methods better than those
already known?

Introduction
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The difference gives a 'Singly Orthogonal Order Condition':

] ] 2 c3
Y Z;Jbi(a;ch — g')ZO
i

We define "stage-order” or "subquadrature” expressions as
qld = (ACKT — C*/k),

to find that vector b must be orthogonal to vector  ql3l.
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Order Conditions are generated by Rooted Trees

Two similar standard order conditions are

J ] 1 1
Y Z;Jb,-a,-,jcj-zzl/(l*l*3*4) Y
i 4

I\i/l Tibicd/3=1/(1%1%1%4)/3 1\i/1
/ 4

The difference gives a 'Singly Orthogonal Order Condition:

] ] 2 c3
Y Z;Jbi(a;ch — 7'):0
i

i.e. b.qBl =0, and past derivations have relied on making
parts of either such order conditions components equal to zero,
but more flexibility is possible.




There are only four types of Order Conditions

Nullspaces

o) Order conditions can be partitioned into four types that exist:
family of

explicit
Runge Kutta m A. Quadrature NV Yibict=1/5= fol c*dc
k-1 terminal nodes each connected to the root

m B. Linear C.C. N.H. \}/ Z,-J,kb,-a,-d-aj,kci’ = 1/120
all terminal nodes connected to the penultimate node

m C. Linear V.C. \1>>/ Z,-J,kb,-ciza,-’jcjaj’kcf =1/120
'side’ subtrees of single nodes only

m D. Non-Linear Ky Z,-J’kb,-(a,-d-cj)(a,-,kcf) = 1/36
at least two subtrees of height two or more)
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Runge Kutta m A. Quadrature A4 Yibict=1/5= fol c*dc
k-1 terminal nodes each connected to the root

m B. Linear C.C. N.H. \r Z,-,j’kb,-a,-,jajkc,‘:’ = 1/120
all terminal nodes connected to the penultimate node

m C. Linear V.C. \I>/ Y, kbic?/2a; kc2 =1/36
'side’ subtrees of single nodes only

m D. Non-Linear W Z,-,j’kb,-(ailjcj)(a,-,kc,%) =1/36
at least two subtrees of height two or more)

This type D becomes C if b; = 0 or ¥;a;j¢; = c?/2, i = 1..12.




There are only four types of Order Conditions
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yield a new Order conditions can be partitioned into four types that exist:
family of

explicit
R““i:rf““a m A. Quadrature NV Z,-b,-c,f1 =1/5= fol c*de
k-1 terminal nodes each connected to the root

m B. Linear C.C. N.H. \r Y, j«biaijajkcg =1/120
all terminal nodes connected to the penultimate node

= C. Linear V.C. \Dy Y, jkbic?aijciaj et = 1/120
'side’ subtrees of single nodes only

m D. Non-Linear 0/ ¥, j«bi(aijci)(aikc?) = 1/36
at least two subtrees of height two or more)

In general, we assume b; = 0 or q[2] = q,[3] =0, i=1..12.

i




Vector-Matrix format of Standard Order Conditions

Nullspaces A Vector-Matrix notation is more convenient:

yield a new
family of
explicit

Sl A Quadrature  QP!=0 Vv bC*e =1/5

pairs

B. Linear Constant Coefficient \r bA2C3e = 1/120

C. Linear Variable Coefficient \I>>/ bC?ACAC?e = 1/120

D. Non-Linear 0/ b(ACe).(AC%e) = 1/36

With retained simplifying conditions, Type D conditions
collapse to type C. Hence, | will be focusing of how to solve the
first three types.
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m each Ck is replaced by the form &*.



Otherwise, the order conditions can be expressed

using integrals:

Nullspaces
ield . - . . .
ey of If you work with order conditions, the following interpretation

explicit

Runge—Kutta as recursive integration may be helpful - for example:

pairs
1 c c
bCAC3AC?e = / c / c3 / &?dedede.
c=0 c=0 é=0

m i.e. bis replaced by integration on [0,1],
m each A is replaced by integration on [0, c],

m each Ck is replaced by the form &*.

Some multiples of these forms can be expressed using specific
nodes as convenient.

Such expressions are utilized in proving some order conditions.




Vector-Matrix Singly Orthogonal Order Conditions
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family of Combining each Standard Order Condition with an earlier one
Ru:;Z:IC(iEtta yields a " Singly Orthogonal Order Condition” (SOOC) from
FEIE which constants have been eliminated:

A. Quadrature 5 - AN b(5Ct —4Ce=0

B. Linear Constant Coefficient \t/ bAq[4] =0

C. Linear Variable Coefficient \Dy bCQACq[3] =0

D. Non Linear W b(ACe.ql) =0

The "subquadratures” gl = (ACk—1 — CK/k)e, show that
SOOCs constrain coefficient expressions by orthogonality.
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2 1 = 1Ybi(1-2¢)=
3 1 1 = 2
4 1 2 = 4
5 1 3 4 1 = 9
6 1 4 11 4 = 20
7 1 5 26 16 = 48
8 1 6 57 51 = 115

Totals 8 21 99 72 = 200 1
All but (1) can be expressed as a S.0. Order Condition.
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26

6 57

Totals 8 21 99

4
16
51

72

-1

Moreover, by suppressing (1) and 2, (XN,) — 2 order conditions
can be written as SOOCs with neither b; nor ¢; present.
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2 1 = 1 Xbi(1—2¢) =
3 1 1 = 2
4 1 2 = 4
5 1 3 4 1 = 9
6 1 4 11 4 = 20
7 1 5 26 16 = 48
8 1 6 57 51 = 115

Totals 8 21 99 72 = 200 1
For (13,7-8) methods, we have seen that q,[k] =0, k=2,3or
b; = 0 otherwise imply conditions D collapse to conditions C.
Next, we show how conditions A and B are satisfied.
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Proof.

(This skeleton will be expanded to derive (s,p) methods for
more general problems.)
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(a) For p distinct nodes c¢;, there is a unique solution of
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ZP+1 Lp+2*k,lcf_1 — ( J) ) ./ = 1 5P — k.

Coefficients a; ; are obtained using a back-substitution with
Loto—ij.
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(This skeleton will be expanded to derive (s,p) methods for
more general problems.)

(a) For p distinct nodes c¢;, there is a unique solution of

P bk t=1, k=1,.,p

(b) More generally, for p distinct nodes ¢;, Lpyo_k,;i =
@) bAf-‘_l, i=p kk +1.1, k=1, )i p, uniquely satisfy
ZP+1 L +2*k,lcf ! — ( 7J) ) ./ = 1 5P — k.

Coefficients a; ; are obtained using a back-substitution with
Lpyo—ij. (a) and (b) satisfy all conditions of type A and B. [



Back-substitution to get a;

Nullspaces L;; form a triangular array:
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[ .
=1 Lp-11 Lp12 - Lp-1p-2
Cs Lpa Lpp .. Lppo Lpp-1
Lp+1,1 Lp+1,2 - Lp+1,p*2 Lp+17p*1 Lp+1,p

and observing bj = Lpi1,i, ap,i = (Lp,i — X bjaj i)/ bp, ... we
substitute up the back diagonals of L to get

a U
i~
m:tl?gds (&) 3271
—1]ap11 ap-12 - ap-1p2 "\
Sp dp,1 dp2 .- dpp—2 dpp-1
bbb, .. bya by b,
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o1 | Lp—11 Lp—12 .. Lp1s0

Cp Lpa Lpp .. Lppo Lpp-1

Lptyia o« Lptip—2 Lptip-1 Lptip

a
" (p,p)"- o

methods

to get agq-1 = (Lg.g-1)/Lg+1,4: 9= P51,

\
a1
N
dp—1,p—2
dp,p—1




Next diagonal of back-substitution:
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cp—1 | Lp—11 o Lpo1p3 Lpo1po
Sp Lpp  Lpp - Lpp—2 Lpp-1
Lpt1a - Lovip—2 Lptip-1 Lptip
to get
ag.q-2 = (Lg.q-1 — Lgt1,g-1 * 3g-1,9g-2)/Lgt1,4, g=pP—1,.., 1,
a
“(p.p)'- 2 | a21
methods . !\ V\
Cp—1| - - dp-1,p-3 dp—1,p-2
Cp dp,p—2  dp,p-—1
bp—l bp




Next diagonal of back-substitution:

Next, with L4 ,—2, we back-compute up the next diagonal:
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Cp—1 Lpfl,l .. Lpfl,p73 Lpfl,pf2
Cp Lp71 Lp72 .. Lp7p_2 Lp,p—l
to get Lp+1,1 . il Lp+1,p—2 Lp+1,p—1 Lp+1,p
ag.q—2 = (Lg.g-1 — Lgs1.q-1% 3g-1,9-2)/Lgt1.9» =P —1,.., 1,
(a]
(o} a1
ahads : N NN
Cp—1 . .. dp—1,p—3 dp—1,p—-2
¢p | and soon . . app—2 aApp-1
bp—1 by

This gives a (p,p)-method for N.H. linear C.C. IVPs.
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To implement this method with stepsize control, it is possible
to derive an embedded method of order 5 with one more stage.
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Definition
For each i, we define 3; to be a matrix of s columns whose
rows are left parts of SOOCs of products up to i coefficients.

[B; may contain b and other rows as appropriate. One possible
choice for (4 is,

b
bC
. bCC
Pa=lpcec
bAA
| bAAA |

but this matrix could contain more rows such as bCCA.

We might use J3; to designate a maximal number of different
rows.
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a; will not contain e = [1, ..., 1]*, but could contain (/ —2C)e
and for j > 1, (2C — 3C?)e and/or ql?.



aj = Right Nullspaces

Definition

Nullspaces
yield a new

(el i Analogously, for each j, we define «; to be a matrix of s rows
explicit J

LSSl whose columns are right parts of SOOCs of products up to j
coefficients,

and we use &; to designate a maximal number of different
columns.

a; will not contain e = [1, ..., 1]*, but could contain (/ —2C)e
and for j > 1, (2C — 3C?)e and/or ql?.

We'll see an example of ap soon. An example of a3 is
Q3 = [(2C - 3C2)e7 q[2]7 (3C2 - 4C3)e7 Aq[z]a q[3]]
We observe now that any matrices 3; and «; are mutually

orthogonal whenever 1 < i+ j < p. Hence, each contains
vectors in the Nullspace of the other.



The Nullspace Theorem
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pairs

Theorem 2: For an s-stage method of order p, it is necessary
that
Bi.oaj =0, 1<i+j<p.

To derive methods, we might try to characterize coefficients of
a method that possesses such orthogonality properties. To this
end, | have studied the orthogonality properties of some new

methods found using Test21. Eventually, | found that matrix A
of such methods has a very special two-parameter partitioning.
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4.bgPl =0
Four solutions exist (see Butcher, 2021, p. 63)



Nullspaces for low order Runge—Kutta methods

Nullspaces As an example, consider three-stage methods of general order

yield a new

family of three:

explicit

L Q=52 b -1 =0
2. QM —2QP =53 bi(1 - 2¢)) =0

~[2] _ ~[3] _ C2(2 — 3C2)

3.2Q 3Q [b2 bs] L3(2 36

4.b.g% =0
Four solutions exist (see Butcher, 2021, p. 63)
We observe that 1 0 0
Bi= by by b3] and o= |1-2c (2-3c) q£2]
1-3c 3(2—3c) qul

these are orthogonal and b # 0, so that «; has rank 2.
Hence, o contains a row or column of zeros, or else has linear
dependence, and this leads to the four solutions that exist.
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then insert new values Lg1p_j =0 (i.e.bj=L3j=

0,bAj=L12;=0,..j=2,3,4,5)

New RK pairs



What is known about (13,7-8) Runge—Kutta pairs?

Nullspaces m The 12-stage method of order 8 is derived first:

yield a new

e m For this, split an (8,8) method for N.H. C.C. linear
Runger Cutta problems after column 1, by moving values

Lpyo—kj, j=2.8to Lsio_kj,j=06..5 for s =12, and
then insert new values Lg1p_j =0 (i.e.bj=L3j=

0,bAj=L12;=0,..j=2,3,4,5)

m On stages 2..9, impose stage-order conditions gl = 0,
and additional constraints on nodes and coefficients so
that remaining conditions of type C are satisfied.

m Assign b; = Ly3,i = 1..12, and after computing
coefficients from stages 2 to 9, use a back substitution
algorithm on Lg 5, ; to compute a; j, j=i-1..1, i=12,11,10.
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What is known about (13,7-8) Runge—Kutta pairs?

Nullspaces The 12-stage method of order 8 is derived first:

yield a new

e m For this, split an (8,8) method for N.H. C.C. linear
Runger Cutta problems after column 1, by moving values

Lpyo—kj, j=2.8to Lsio_kj,j=06..5 for s =12, and
then insert new values Lg1p_j =0 (i.e.bj=L3j=

0,bAj=L12;=0,..j=2,3,4,5)

m On stages 2..9, impose stage-order conditions gl = 0,
and additional constraints on nodes and coefficients so
that remaining conditions of type C are satisfied.

m Assign b; = Ly3,i = 1..12, and after computing
coefficients from stages 2 to 9, use a back substitution
algorithm on Lg 5, ; to compute a; j, j=i-1..1, i=12,11,10.

m Then, the embedded method of order 7 is obtained
New RK pairs from similar values L; j using another back-substitution.
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m If ¢ = 1/2, then Rank (Columns 6 to 12 of 3;)=5, and
g is a Nullvector of this submatrix.
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m If ¢ = 1/2, then Rank (Columns 6 to 12 of 3;)=5, and
g is a Nullvector of this submatrix.

m Rank of ay = 5.

= Non-trivial columns of a4 are P4(C) and ql*}.

New RK pairs



Properties of the New Methods

On computation with some new methods of order 8, | found

Nullspaces
yield a new

family of = .
oxplicit m 34 is 18 x 12, has four columns of zeros, and rank = 6.

Runge—Kutta - . ~
pairs m (34 is spanned by the rows of (4.

m P4(C) =1-20C+90C? — 140C% + 70C* and ql*l are
Nullvectors of 4. Hence, Nullspace (/34) is spanned by
{ei, i=2.5, P4(C)7 q[4]}

m If ¢ = 1/2, then Rank (Columns 6 to 12 of 3;)=5, and
g is a Nullvector of this submatrix.

m Rank of ay = 5.

= Non-trivial columns of a4 are P4(C) and ql*}.

New RK pairs Observe that [ = 0 used in known (12,8)_ methods is relaxed
so that lhis vector lies in the Nullspace of (4.
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explicit
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New RK pairs

Outline of New (12,8) Methods

Almost Theorem 3: Compute for a 12-stage method:

12 nodes with ¢, g, .., c12 distinct confined by
3 =2a/3, 5= (4c —3c)/(cs(bca —4cs)), and for
7(c) = c(c — ¢c)(c — ¢7)(c — c8), cg is chosen so that

[/01 7r(c)(c ;!1)2 dc} [/01 (e ao) (c ;!1)2 dc}
1 c—1)3 1 c_
- [/0 W(C)( 3!1) dc} [/0 m(c)(c - Cg)( T D dc}.

Choose stages 2 to 9 so that q[k] =0, k=1,2,3.

i

Constrain stage 9 so that Z,-b,-cl-za,-J =0, j=4,5.

Choose remaining parameters so 34 is orthogonal to gt*l.
Lij (with L;j; =0, j = 2..5) and back-substitution, for the
weights b; and stages 12 to 10.
Then, the method has order 8.



Partial proof

Nullspaces P f
family of
explicit g2 k —
RungeKutta Conditions A and B follow from gl¥l, k = 1,2, 3, and L;;. Also,
pairs

values for qI[k] force Conditions D to collapse to Conditions C .
To establish Conditions C, formulas among A, C, b are used:

m L;j with i = 13,12 imply bA = b(/ — C)
m post-multiplication of bA-b(I-C) by A,C,AA,CC,AC,CA
m bCCAx g =0

These imply bAC, bCA, bCAA, bACC lie in the rowspace of [3a;
bAAC, bCAC, bACA, added to linear combinations of

Ck, k = 0..4 can be shown to be orthogonal to gl* by direct
computation. These imply most of Conditions C hold. O

This will leave one arbitrary coefficient in row 8 of A (selected
as ag,7).As well, under further constraints, a7 is arbitrary.

New RK pairs



Algorithm for Known (12,8) methods

1]

Wi m Stage 2 g1 =0 = a1 = .
family of
expliycit ™ Stage 3: q:[))]-] — q:[),2] =0.

Runge—Kutta
pairs

m Stage 4: a30 =0, qz[lk] =0,k=1,2,3.

m Stage 5: a5, =0,¢.0 =0,k =1,2,3.

m Stage 6: ago2 = a3 =0, qék] =0,k=1,2,3,4.

m Stage 7: a7p = a73 =0, qy(] =0,k=1,2,3,4.

m Stage 8: ago = ag3 =0, 334, qg(] =0,k=1,2,3,4.

m Stage 9: ago = ag3 :=0, qg(] =0,k=1,2,3,4.
L13,10(c10 — c12)(c10 — C11)Z?:k+1 L11jajk
-L11,10%7 g4 1 L13j(¢ — c12)( — ci1)ajx =0, k= 4,5.

m Stages 12..10 and b;: Observe b; = Ly3;,i = 1..12, and
use back-substitution on L4y i, k =2..4, i =13 —k,..,1
to get aja—«,i, k=2.4 i=13—k..1.

New RK pairs
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Algorithm for Known (12,8) methods

m Stage 2:
m Stage 3:
m Stage 4:
m Stage 5:
m Stage 6:
m Stage 7:
m Stage 8:
m Stage O:

1]

q£ =0 = a1 = Q. S0=1
qgll = qul =0. SO0=2
a2=0, g}l =0k=123. S0=3
as2=0,q0 =0,k =1,23. S0=3

ago = ap3 — 0, qék] =0,k=1,2,3,4. SO=4

arp=ar3=0,g'0 =0 k=1234  SO=4
as2 = as3=0,54. ) = 0.k =1,2,3,4.50=4

02 =ag3 =0, =0, k=1,2,34  SO=4

Lz10(c10 — c12)(cro0 — c11) T}y 1 L11 jaj k
—L117102?2k+1L13’j(Cj — C12)(C:,' — c11)aj,k == 0, k= 4, 5.

m Stages 12..10 and b;: Observe b; = Ly3;,i = 1..12, and
use back-substitution on L4y i, k =2..4, i =13 —k,..,1
to get aja—«,i, k=2.4 i=13—k..1.




Algorithm for New (12,8) methods - reduce SO

g m Stage 2: ¢} =0 = a1 =0 S0=1
i ol Stage 3: qg] = qul =0. o)

-t Stage 4: a3» =0, qz[lk] =0,k=1,2,3. SO=3
Stage 5: a5 = 0,ql =0,k =1,2.3. 50=3

Stage 6: 3,2 = 363 = 0, qf[sk] =0,k=1,2,3,4. SO=4
Stage 7: a7p =a73=0,a756. qy(] =0,k=1,2,3 >50=3
Stage 8: ag2 = ag3 = 0, ag 7, qg(] =0,k=1,2,3 >50=3
Stage 9: ago> = ag3 :=0, qgk] =0,k=1,2,3 >S0=3
Liz10(c10 — c12)(cio — c11) X}y 41 L1 jaj k
'L11,102?2k+1L13,j(Cj - 612)(Cj - c11)aj,k == 0, k = 4, 5.
m Stages 12..10 and b;: Observe b; = Ly3;,i = 1..12, and
use back-substitution on Lis_y i, k =2..4, i =13 —k,..,1
to get ayy—x,i, k=2.4, i =13 k.1

New RK pairs

But to get order 8 more is needed to replace gl =o0.




Structure of New Pairs

Nullspaces Theorem 4: Assume {b, b, A, c}, yield a traditional (13,7-8)

yield a new

family of pair. For ¢g = 1/2, and any other value of a7 = aze, and

explicit Y .
Runge—Kutta possibly a different value of ag 7 = ag7, define four vectors by

pairs

m R1 is the solution of a7, = a73 =0, are = ave,
=0 k=123
m V1 is the solution of V17 =1, and B;;.Vl =0.
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explicit

RungeKutta possibly a different value of ag7 = ag7, define four vectors by
m R1 is the solution of a7, = a73 =0, are = ave,
=0 k=123
m V1 is the solution of V17 =1, and B;;.Vl =0.
m R2 is the solution of ag» = ag3 =0, ag7 = ag7,
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m V2 is the solution of V2g =1, and B3.V2 =0.
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Structure of New Pairs

Nullspaces Theorem 4: Assume {b, b, A, c}, yield a traditional (13,7-8)

yield a new

family of pair. For ¢g = 1/2, and any other value of a7 = aze, and

explicit

RungeKutta possibly a different value of ag7 = ag7, define four vectors by
m R1 is the solution of a7, = a73 =0, are = ave,
=0 k=123
m V1 is the solution of V17 =1, and B;;.Vl =0.
m R2 is the solution of ag» = ag3 =0, ag7 = ag7,
g =0, k=123 ¢ = vigx gt/v1;.
m V2 is the solution of V2g =1, and B3.V2 =0.

Then for each azg and ag7, and

A = A + V1.Rlazs + V2.R2ag7,

(Vi.Ri is an outer product) {b, b, A, c} yields a new (13,7-8)
Structure of Matrix A pa | r



Structure of New Pairs (Continued)

Nullspaces
yield a new Proof.

family of

S For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
pairs Nullvector of 54. Also, R1 is a left Nullvector of @&s. The

matrix for V2 has rank 4, and so V2 is a right Nullvector of ;.

As well, R2 is a left Nullvector of &vz. These seem sufficient to

prove that coefficients {b, bh, A, c} yield a (13,7-8) pair. [

Structure of Matrix A



Structure of New Pairs (Continued)

Nullspaces
yield a new Proof.

family of

S For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
pairs Nullvector of 54. Also, R1 is a left Nullvector of @&s. The

matrix for V2 has rank 4, and so V2 is a right Nullvector of ;.

As well, R2 is a left Nullvector of &vz. These seem sufficient to

prove that coefficients {b, bh, A, c} yield a (13,7-8) pair. [

For each traditional (13,7-8) pair with ¢ = 1/2 and a value of
ag 7, this yields a new family of such pairs in the parameter
az,6. While we have exchanged the freedom to choose an
arbitrary value for ¢ to make a7 ¢ a parameter, we have
derived a new family of pairs.

Structure of Matrix A



Structure of New Pairs (Continued)

Nullspaces
yield a new Proof.

family of
S For c6 = 1/2, the matrix for V1 has rank 5, so V1 is a right
pairs Nullvector of 54. Also, R1 is a left Nullvector of @&s. The
matrix for V2 has rank 4, and so V2 is a right Nullvector of ;.
As well, R2 is a left Nullvector of &vz. These seem sufficient to

prove that coefficients {b, bh, A, c} yield a (13,7-8) pair. [

For each traditional (13,7-8) pair with ¢ = 1/2 and a value of
ag 7, this yields a new family of such pairs in the parameter
az,6. While we have exchanged the freedom to choose an
arbitrary value for ¢ to make a7 ¢ a parameter, we have
derived a new family of pairs.

A code for obtaining pairs of this new type is similar to that for
the traditional pairs. When ¢g = 1/2, | have used this code to
optimize over the range of arbitrary nodes, a7 and ag7 .



Are there efficient pairs within the new family?

Nullspaces
yield a new

family.of Criteria accepted for determining good pairs usually requires
explicit

Runge—Kutta that the 2-norm of the Local Truncation Error is small for the
pairs propagating method.

Pair Nodes LTE, D Stab.
EE — JHV(1978) 0,1/4,1/12 3.82E - 05 598 (-5.07,0]
Fam — JHV/(1979) 0,2/27,1/9 9.82e— 06 15.64 (—5.00,0]
HNW(DP)(1991) 0,.158,.237  224E—06 43.48 (—5.49,0]
55(1993) 0,19/250,1/10 1.08E —06 27.30 (—5.68,0]
MAPLE(2000) 0,.054,.102 1.55E — 06 20.18 (—5.84,0]

Eff. — JHV(2010) 0,1/20,341/3200 2.82E —07 123.37 (—5.86,0]
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Are there efficient pairs within the new family?

Criteria accepted for determining good pairs usually requires

that the 2-norm of the Local Truncation Error is small for the
propagating method.

Pair
EE — JHV(1978)
Fam — JHV/(1979)
HNW(DP)(1991)
55(1993)
MAPLE(2000)
Eff. — JHV(2010)

Improvement

Nodes
0,1/4,1/12
0,2/27,1/9
0,.158,.237

0,19/250,1/10
0,.054,.102
0,1/20,341/3200

(2023)

LTE,
3.82E — 05
9.82e — 06
2.24E — 06
1.08E — 06
1.55E — 06
2.82E — 07
2.73E — 07

D

5.98
15.64
43.48
27.30
20.18
123.37
123.75

Stab.
(~5.07, 0]
(—5.00, 0]
(—5.49, 0]
(—5.68, 0]
(—5.84, 0]
(—5.86, 0]
(—5.81,0]
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Are there efficient pairs within the new family?

Criteria accepted for determining good pairs usually requires

that the 2-norm of the Local Truncation Error is small for the
propagating method.

Pair
EE — JHV(1978)
Fam — JHV(1979)
HNW(DP)(1991)
55(1993)
MAPLE(2000)
Eff. — JHV(2010)
Improvement
New — JHV(2023)

Nodes
0,1/4,1/12
0,2/27,1/9
0,.158,.237

0,19/250,1/10
0,.054,.102
0,1/20,341/3200

(2023)

0,1/1000,1/6

LTE,
3.82E — 05
9.82e — 06
2.24E — 06
1.08E — 06
1.55E — 06
2.82E — 07
2.73E — 07
3.67E — 06

D

5.98
15.64
43.48
27.30
20.18
123.37
123.75
48.52

Stab.
(~5.07, 0]
(—5.00, 0]
(—5.49, 0]
(—5.68, 0]
(—5.84,0]
(—5.86, 0]
(—5.81,0]
(—4.29,0]



What have we learned?

il An algorithm for deriving methods for N.H. linear C.C.

yield a new

family of IVPS

explicit
Runge—Kutta
pairs

That there exist undiscovered parametric families of
explicit R-K pairs for general IVPs.

Algorithms for deriving these new methods.
Better methods have been known for over a decade.



What have we learned?

Nullspaces

yield b new An algorithm for deriving methods for N.H. linear C.C.
family of IVPS

explicit
Runger Cutta That there exist undiscovered parametric families of

explicit R-K pairs for general IVPs.
Algorithms for deriving these new methods.
Better methods have been known for over a decade.

What else can we study?
A more complete proof of order of the new pairs.
Why is Rank(c) only equal to 57

Explore orthogonality properties of lower and higher order
explicit methods.

Can these tools be used for deriving General Linear
Methods?



What have we learned?

Nullspaces

yield b new An algorithm for deriving methods for N.H. linear C.C.
family of IVPS

explicit
Runger Cutta That there exist undiscovered parametric families of

explicit R-K pairs for general IVPs.
Algorithms for deriving these new methods.
Better methods have been known for over a decade.

What else can we study?
A more complete proof of order of the new pairs.
Why is Rank(c) only equal to 57

Explore orthogonality properties of lower and higher order
explicit methods.

Can these tools be used for deriving General Linear
Methods?

Thank you for listening



But wait! | wanted to mention one more thing...

Nullspaces
yield a new
family of
explicit
Runge—Kutta

pairs This week Paul Muir and Ray Spitiri provided me with a link to
an Undergraduate Thesis by David K. Zhang. This thesis may
be found at

https://arxiv.org/abs/1911.00318

The thesis discusses the use of Machine Learning that David K.
Zhang utilized to obtain approximate coefficients for some
(16-10) methods. John has been searching for such methods
for over 40 years. For two methods displayed in the Appendices,
coefficients are recorded in 70 decimal digit floating point form.



A challenge

Nullspaces

e | have applied a MAPLE version of the code John and | wrote

explicit in 1970 to find that coefficients of the first method displayed

Runge—Kutta
pairs satisfies the order conditions to 68 digits.

| have also applied a few of the tools | have described above to
show for this first method that 34 is orthogonal to each of
ql, P!, ql®l and as well to each of three polynomials of
degrees 4,5, and 6 that are analogs of P4(C) defined above. It
might be hoped that such tools may lead to a precise
characterization of such methods having exact coefficients.



A challenge

Nullspaces
yield a new

family of | have applied a MAPLE version of the code John and | wrote
explicit in 1970 to find that coefficients of the first method displayed

Runge—Kutta
pairs satisfies the order conditions to 68 digits.

| have also applied a few of the tools | have described above to
show for this first method that 34 is orthogonal to each of
ql, P!, ql®l and as well to each of three polynomials of
degrees 4,5, and 6 that are analogs of P4(C) defined above. It
might be hoped that such tools may lead to a precise
characterization of such methods having exact coefficients.

Perhaps some of you may wish to do some studies of this. |
also hope that | have given John a new perspective on this
problem he has studied for so many years.

HAPPY BIRTHDAY JOHN
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