
Target time 11:46 Clock time: 0

High order Runge–Kutta methods revisited

John Butcher

ANODE 2023

Dedicated to Dauda Gulibur Yakubu

Target time 11:48 Clock time: 0

1. A brief history of Runge–Kutta methods (Contents)

1 A brief history of Runge–Kutta methods
Trees and order conditions
Euler, Runge, Heun, Kutta, Nyström, Orders 1, 2, 3, 4, 5
Order barriers
Orders up to 10

2 Methods based on Lobatto quadrature

3 A variant of Lobatto methods

4 Sotware support

Target time 11:50 Clock time: 1

Trees and order conditions
The famous trees of Cayley, which were originally drawn upside-down, turn
out to be at the centre of the theory of Runge–Kutta methods.

The number of vertices of t is the order |t|

Up to order 5, the trees are

Target time 11:52 Clock time: 2

1. A brief history of Runge–Kutta methods

For a Runge–Kutta method
c A

b
,

the conditions for order p are

Φ(t) = (t!)−1, |t| ≤ p, .

where Φ(t) is the elementary weight and t! is the factorial.

An example is ∑
bic2

i aijcjajkc3
k = 1

216

i

j
k

9
6

4

Target time 11:53 Clock time: 3

1. A brief history of Runge–Kutta methods (continued)
Euler, Runge, Heun, Kutta, Nyström, Orders 1, 2, 3, 4, 5
In this brief history, we will confine ourselves to explicit methods.

A little table will give us an idea when it is possible to achieve order p with s
stages

p trees totals s 1
2 s(s + 1) authors

1 1 1 1 1 Euler
2 1 2 2 3 Runge
3 2 4 3 6 Heun
4 4 8 4 10 Kutta

5 15
5 9 17 6 21 Nyström

What this table doesn’t tell us:
I Kutta derived two methods with order 5 but each had trivial errors.

Nyström corrected one of these
I Early derivations were for a single first order equation which only

required 16 order conditions
I You can guess the achievable order by comparing the number of

parameters with the number of constraints.
But this is not the true reason

Target time 11:55 Clock time: 4

1. A brief history of Runge–Kutta methods (continued)

Order barriers
When we get to order 6, the following happens

1. There are 37 order conditions for vector-valued problems
2. But only 36 for scalar problems
3. Hut’a assumed that 8 stages (36 paremeters) were needed
4. Methods exist with 7 stages (28 parameters)

The actual number of stages required is known up to order 8

The first “order barrier" is s ≥ p + 1 if p ≥ 5

The second barrier is s ≥ p + 2 if p ≥ 7

The third barrier is s ≥ p + 3 if p ≥ 8

The first barrier is easy to prove

For simplicity we will assume p = 5

Target time 11:57 Clock time: 5

1. A brief history of Runge–Kutta methods (continued)

Theorem

No Runge–Kutta method exists with s = p = 5

Proof.

We will show that the existence of a method with s = p = 5 leads to a contradiction.
Evaluate the vector product uv , and impose order conditions to the result, where

u =



b5a54a43
b4(c4 − c5)a43

b3(c3 − c5)(c3 − c4)


, v =

[
a32c2 (c3 − c2)c3

]
,

uv =



1
120

1
60 −

1
24 c2

1
30 −

1
24 c5

1
15 −

1
12 c5 − (1

8 −
1
6 c5)c2

1
10 −

1
8 (c4 + c5) + 1

6 c4c5
1
5 −

1
4 (c4 + c5) + 1

3 c4c5 − (1
4 −

1
3 (c4 + c5) + 1

2 c4c5)c2


.

Because uv has rank 1, it is found that either c2 = 0, or c4 = c5 = 1. If c2 = 0, a
method with s = 4, p = 5 would exist.

Therefore
0 =
∑

bi(1 − ci)aijajkck = 1
120 .

�

Target time 11:59 Clock time: 6

1. A brief history of Runge–Kutta methods (continued)

Orders up to 10
As pointed out above, Hut’a derived a method with s = 8 satisfying the order 6
conditions for a scalar problem which, fortunately, also satisfies the full order
6 conditions for vector problems.

For p = 7, s = 9 is necessary and sufficient.

Methods with p = 8, s = 11 were derived by G. J. Cooper and J. H. Verner.
This was first published in Verner’s 1969 thesis but hinges on both
unpublished work of Cooper as well as on the collaborations between Cooper
and Verner.

Methods with p = 8, s = 11, were also discovered independently by A. R.
Curtis.

It has been shown that methods with p = 8, s = 10 do not exist.

A method with p = 10, s = 17 was derived by E. Hairer.

Target time 12:01 Clock time: 7

2. Methods based on Lobatto quadrature (Contents)

1 A brief history of Runge–Kutta methods

2 Methods based on Lobatto quadrature
Examples of Lobatto methods
Structure and notation
Achieving block order
Trees and order conditions

3 A variant of Lobatto methods

4 Sotware support

Target time 12:03 Clock time: 8

2. Methods based on Lobatto quadrature

Examples of Lobatto methods
For even order methods, Lobatto quadrature plays an important role.

Here are some examples

p = 2 :
∫ 1

0 φ(x|)dx ≈ 1
2φ(0) + 1

2φ(1)
0
1 1
1
2

1
2

p = 4 :
∫ 1

0 φ(x)dx ≈ 1
6φ(0) + 2

3φ(1
2) + 1

6φ(1)

0
1
2

1
21

2
1
4

1
4

1 0 −1 2
1
6 0 2

3
1
6

p = 6 :
∫ 1

0 φ(x)dx ≈ 1
12φ(0) + 5

12φ(1
2 −

1
10

√
5) See next page

+ 5
12φ(1

2 + 1
10

√
5) + 1

12φ(1)

Target time 12:05 Clock time: 9

2. Methods based on Lobatto quadrature (continued)

0
5+
√

5
10

5+
√

5
10

5+
√

5
10

5+
√

5
20

5+
√

5
20

5−
√

5
10

√
5

10
−2+
√

5
2

15−7
√

5
10

5−
√

5
10

5+
√

5
60 0 15−7

√
5

60
1
6

5+
√

5
10

5−
√

5
60 0 1

6
−27−11

√
5

60
7+3
√

5
10

1 1
6 0 −25+7

√
5

12
17+11

√
5

12 −1−
√

5 5−
√

5
2

1
12 0 0 0 5

12
5
12

1
12

To illustrate the pattern, which also works for the p = 8, s = 11 methods of
Cooper and Verner, we can highlight the most significant elements in this
tableau

Target time 12:07 Clock time: 10

2. Methods based on Lobatto quadrature (continued)

1

2

3

0
5+
√

5
10

5+
√

5
10

5+
√

5
10

5+
√

5
20

5+
√

5
20

5−
√

5
10

√
5

10
−2+
√

5
2

15−7
√

5
10

5−
√

5
10

5+
√

5
60 0 15−7

√
5

60
1
6

5+
√

5
10

5−
√

5
60 0 1

6
−27−11

√
5

60
7+3
√

5
10

1 1
6 0 −25+7

√
5

12
17+11

√
5

12 −1−
√

5 5−
√

5
2

1
12 0 0 0 5

12
5
12

1
12

Target time 12:08 Clock time: 11

2. Methods based on Lobatto quadrature (continued)

Structure and notation
The tableau for a block Lobatto method, with the blocks shown on the left, is

B0
B1
B2
B3
B4
...

Bn

0
c1 c1
c2 o2 a2 d2
c3 o3 a3 d3
c4 o4 a4 d4
...

...
. . .

. . .

cn on an dn

b0 b

b : 1 × n,
cm : m × 1, m = 1,2, . . . ,n,
am : m × (m − 1), m = 2,3, . . . ,n,
dm : m × m, m = 2,3, . . . ,n,

s = 1 + 1
2 n(n + 1).

The stages in block Bm have stage order m, (m = 2,3, . . . ,n).

Target time 12:10 Clock time: 12

2. Methods based on Lobatto quadrature (continued)

Achieving block order
Define the “quadrature matrix" qm (m × (m − 1)) so that

qmci−1
m−1 = 1

i ci
m, i = 1,2, . . .m

Define the “interpolation matrix" pm (m × (m − 1)) so that

pmci−1
m−1 = ci

m−1, i = 1,2, . . .m

with the final row zero.

Theorem

The stages in block Bm have stage order m, (m = 2,3, . . . ,n) iff

am = qm − dmpm.

Target time 12:12 Clock time: 13

2. Methods based on Lobatto quadrature (continued)

Trees and order conditions
Recall the standard conditions for order p

Φ(t) =
1
t!
, |t| ≤ p. (*)

Theorem

If the block stage order conditions are satisfied then (*) needs to hold only for
trees of the form

t = [k1,k2, . . . ,kq] := k1−1k1−1k1−1k1−1

k2−1k2−1k2−1k2−1

kq−1kq−1kq−1kq−1kq−1kq−1

These conditions reduce to equations in d2, . . . ,dn.

Target time 12:14 Clock time: 14

2. Methods based on Lobatto quadrature (continued)

Denote Cm = diag cm, then Φ(t) can be evaluated recursively by

Φ(t) = bCk1−1
n φn,2, (1)

φm,i = amCki−1
m−1φm−1,i+1 + dmCki−1

m φm,i+1

= qmCki−1
m−1φm−1,i+1 − dmpmCki−1

m−1φm−1,i+1 + dmCki−1
m φm,i+1, (2)

φm,q = amckq−1
m−1 + dmckq−1

m

= qmckq−1
m−1 − dmpmckq−1

m−1 + dmckq−1
m . (3)

with
t! = kq(kq + kq−1) · · · (kq + kq−1 + · · · + k1).

For methods in which cm−1 is a permutation of the first m − 1 elements of cm,
the interpolation is exact and (3) reduces to

φm,q = qmckq−1
m−1 .

Target time 12:16 Clock time: 15

3. A variant of Lobatto methods (Contents)

1 A brief history of Runge–Kutta methods

2 Methods based on Lobatto quadrature

3 A variant of Lobatto methods
Wider choice of c2

4 Sotware support

Target time 12:18 Clock time: 16

3. A variant of Lobatto methods

Wider choice of c2
It is possible, at least for n = 3, to choose the components of c2 other than
from the first 2 components of c3. For example,

0
1
3

1
3

1
3

1
6

1
6

1 − 1
2 − 9

2 6
5−
√

5
10

5+
√

5
50 0 75−21

√
5

200
5−3
√

5
200

5+
√

5
10

5−
√

5
50 0 75+21

√
5

200
5+3
√

5
200 0

1 0 0 − 15
4 − 1

4
5+
√

5
2

5−
√

5
2

1
12 0 0 0 5

12
5
12

1
12

A detailed analysis yields the condition on c2 to obtain order 6:

(c2)2 =
(c2)1

15(c2)2
1 − 10(c2)1 + 2

.

Target time 12:20 Clock time: 17

4. Sotware support (Contents)

1 A brief history of Runge–Kutta methods

2 Methods based on Lobatto quadrature

3 A variant of Lobatto methods

4 Sotware support
A 1970 program
A 2021 program
Derivation and testing of Lobatto methods

Target time 12:22 Clock time: 18

4. Sotware support

A 1970 program
On 1 January 1970, the same day as the UNIX era began, Jim Verner and I
wrote a code for testing the order of a Runge–Kutta method.

We developed the algorithm in Algol and Jim wrote the working version in
APL.

In 2022, Jim translated the program from APL into Maple.

An account of this work can be found in “Our first B-series program", by John
Butcher and Jim Verner, https://jcbutcher.com/1970

Target time 12:23 Clock time: 19

4. Sotware support (continued)

A 2021 program
An algorithm from “B-series: Algebraic Analysis of Numerical Methods,
Springer 2021" has been implemented as test21. This has a similar function to
test70.

Target time 12:25 Clock time: 20

4. Sotware support (continued)

Derivation and testing of Lobatto methods
Using a Maple program based on test21, specifically targeted to the analysis
and derivation of Lobatto methods, a new derivation of the pioneering
methods of Cooper and Verner has been found.

As an illustration of how this works, look at the derivation of an order 6
method. This is followed by a sample order 8 derivation

Command Output
prep(12, 21, 1);
test(2); 1: [2, 4] 0
test(3); 1: [2, 1, 3] 1
sol(3); "solution found"
fix(3); ∅
test(4); 1: [2, 1, 1, 2] 1
sol(2); "solution found"
fix(2); ∅
test(5); no trees

Target time 12:27 Clock time: 21

4. Sotware support (continued)

Command Output
prep(123, 321, 21, 1);
test(2); 1: [2, 6] 0

2: [2, 5] 0
3: [3, 5] 0

test(3); 1: [2, 1, 5] 1
2: [2, 2, 4] 1
3: [2, 1, 4] 1
4: [3, 1, 4] 1

sol(4); "solution found"
fix(4); ∅
test(4); 1: [2, 1, 1, 4] 1

2: [2, 1, 2, 3] 1
3: [2, 2, 1, 3] 1
4: [2, 1, 1, 3] 1
5: [3, 1, 1, 3] 1

sol(3); "solution found"
fix(3); ∅
test(5); 1: [2, 1, 1, 1, 3] 0

2: [2, 1, 1, 2, 2] 0
3: [2, 1, 2, 1, 2] 0
4: [2, 2, 1, 1, 2] 1
5: [2, 1, 1, 1, 2] 0
6: [3, 1, 1, 1, 2] 1

sol(2); "solution found"
fix(2); ∅
test(6); 1: [2, 1, 1, 1, 1, 2] 0
test(7); no trees

Target time 12:29 Clock time: 22

Tree of the day
According to Wagner, Tanhäuser was given a sign that his sins were forgiven
when his walking staff sprouted leaves and flowers.

In the 1940s, something similar happened to a fence post standing in Lake
Wānaka.

The Wānaka Willow is now the most photographed tree in New Zealand.

	A brief history of Runge–Kutta methods
	Trees and order conditions
	Euler, Runge, Heun, Kutta, Nyström, Orders 1, 2, 3, 4, 5
	Order barriers
	Orders up to 10

	Methods based on Lobatto quadrature
	Examples of Lobatto methods
	Structure and notation
	Achieving block order
	Trees and order conditions

	A variant of Lobatto methods
	Wider choice of c2

	Sotware support
	A 1970 program
	A 2021 program
	Derivation and testing of Lobatto methods

	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:
	cronobox:
	hours:
	separatortime: :
	minutes:
	separatortime: :
	seconds:

