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1. Introduction

In this article we classify transitive permutation groups where some nontrivial element fixes three points,
but all four point stabilizers are trivial. The motivation for the study of this question is rooted in the
theory of Riemann surfaces and their automorphisms. Schoeneberg proved that if an automorphism of
a compact Riemann surface X of genus at least two fixes five or more points, then all of its fixed points
are Weierstraß points. By definition Weierstraß points are analytically distinguished. Their significance
for understanding the structure of Aut(X) became apparent when Schwarz used the action of Aut(X)
on the set W(X) of Weierstraß points of X in order to establish the finiteness of Aut(X).
In the following we denote by Fix(X) the set of all x ∈ X which appear as a fixed point of some nontrivial
automorphism of X. This article continues the work begun in [19] whose ultimate aim is to identify the
pairs (X,Aut(X)) for which Fix(X) ̸⊆ W(X). Our approach is to first identify the potential candidates
for Aut(X), which is done by considering the action of Aut(X) from the point of view of abstract
permutation groups. From this perspective, Schoeneberg’s result naturally leads to the investigation of
transitive permutation groups where nontrivial automorphisms have at most four fixed points.
In [19] we considered the case where at most two fixed points are allowed, which of course includes
Frobenius groups. In the present paper we consider the next case, which means that all four point
stabilizers are trivial, but some three point stabilizer is not. Our first two theorems classify the simple
and almost simple permutation groups satisfying our hypotheses whereas the third result is a general
structure theorem. The final case, where five point stabilizers are trivial and some four point stabilizer
is not, is work in progress.

Theorem 1.1. Suppose that G acts faithfully and transitively on a set Ω. Suppose that the four point
stabilizers are trivial, but that some three point stabilizer is nontrivial. If G is simple and ω ∈ Ω, then
one of the following holds:

(i) Gω is not cyclic and one of the following is true:
(a) G ∼= A5, |Ω| = 15 and Gω ∈ Syl2(G).
(b) G ∼= A6, |Ω| ∈ {6, 15} and Gω is isomorphic to A5 or S4, respectively.
(c) G ∼=PSL2(7), |Ω| = 7 and Gω

∼= S4.
(d) G ∼= A7, |Ω| = 15 and Gω

∼=PSL2(7).
(e) G ∼=PSL2(11), |Ω| = 11 and Gω

∼= A5.
(f) G ∼= M11, |Ω| = 11 and Gω

∼= M10
∼= A6 ˙2.
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(ii) Gω is cyclic of order prime to 6 and one of the following is true:
(a) G ∼=PSL3(q) and |Gω| = q2 + q + 1/(3, q − 1).
(b) G ∼=PSU3(q) and |Gω| = q2 − q + 1/(3, q + 1).
(c) G ∼=PSL4(3), |Ω| = 27 · 36 · 5 and |Gω| = 13.
(d) G ∼=PSU4(3), |Ω| = 27 · 36 · 5 and |Gω| = 7.
(e) G ∼=PSL4(5), |Ω| = 27 · 32 · 56 · 13 and |Gω| = 31.
(f) G ∼= A7, |Ω| = 360 and |Gω| = 7.
(g) G ∼= A8, |Ω| = 2880 and |Gω| = 7.
(h) G ∼= M22, |Ω| = 27 · 32 · 5 · 11 and |Gω| = 7.

We remark that the point stbilizers in cases (i)(d) and (f) are examples of groups satisfying the main
hypothesis of [19].

Theorem 1.2. Suppose that G acts faithfully and transitively on a set Ω. Suppose that the four point
stabilizers are trivial, but that some three point stabilizer is nontrivial. If G is almost simple, but not
simple and if ω ∈ Ω, then one of the following holds:

(i) There is a prime p such that G ∼=Aut(PSL2(2
p)) =Aut(SL2(2

p)), and Ω is the set of 1-spaces of
the natural module of SL2(2

p). (This includes the example where G ∼= S5 in its natural action
on five points.)

(ii) G ∼=PGL3(q) with (q − 1, 3) = 3, |Ω| = q3(q2 − 1) and Gω is cyclic of order (q3 − 1)/(q − 1).
(iii) G ∼=PGU3(q) with (q + 1, 3) = 3, |Ω| = q3(q2 + 1) and Gω is cyclic of order (q3 + 1)/(q + 1).

Almost 40 years ago Pretzel and Schleiermacher [20] studied an important special case of our present
situation, namely they investigated transitive permutation groups in which, for a fixed prime p, every
nontrivial element fixes either p or zero points. (They call these groups (0, p)-groups.) They stated that
one would like to prove that either G contains a regular normal subgroup of index p or that G contains
a normal subgroup F of index p such that F acts as a Frobenius group on its p orbits. Although our
hypothesis is more general, the influence of the work of Pretzel and Schleiermacher is visible in several
places in this article.
Before we state our main theorem, we recall that H ≤ G is said to be strongly embedded in G if H
has even order and if, for all g ∈ G \H, the intersection H ∩Hg has odd order.

Theorem 1.3. Suppose that G acts faithfully and transitively on a set Ω. Suppose that the four point
stabilizers are trivial, but that some three point stabilizer is nontrivial. Then G has order divisible by 3
and if ω ∈ Ω, then one of the following holds:

(i) |Gω| is even and one of the following is true:
(a) G has a normal 2-complement.
(b) G has dihedral or semidihedral Sylow 2-subgroups and 4 does not divide |Gω|. In particular

Gω has a normal 2-complement.
(c) Gω contains a Sylow 2-subgroup S of G and G has a strongly embedded subgroup.
(d) |G : Gω| is even, but not divisible by 4 and G has a subgroup of index 2 that has a strongly

embedded subgroup.
(ii) |Gω| is odd and one of the following is true:

(a) G has a normal subgroup R of order 27 or 9, and G/R is isomorphic to S3, A4, S4, to a
fours group or to a dihedral group of order 8.

(b) G has a regular normal subgroup.
(c) G has a normal subgroup F of index 3 which acts as a Frobenius group on its three orbits.
(d) G has a normal subgroup N which acts semiregularly on Ω such that G/N is almost simple

and Gω is cyclic.
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This paper is structured as follows: After fixing some standard notation, we introduce examples which
are typical for the situation that we analyze later on. Then we move on to proving results about the local
structure of the groups under consideration and collect enough information to bring the Classification
of Finite Simple Groups into action in an efficient way. In our reduction to almost simple groups it
is necessary to consider normal subgroups satisfying the main hypothesis of [19], as can be seen for
example in the proof of Lemma 2.23. This is one of the many places where the interaction between the
individual pieces of the project outlined in the beginning of this section becomes visible.
Sections 3 to 5 deal with particular classes of simple and quasisimple groups. Then in Section 6 we
collect this information for the proof of Theorems 1.1 and 1.2. Finally we give the proof of Theorem
1.3. and we explain how the possibilities arising in Theorem 1.3.2 (b) resemble the examples given in
Section 2.1.
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2. Preliminaries

In this paper, by “group” we always mean a finite group, and by “permutation group” we always mean
a group that acts faithfully.
In this chapter let Ω denote a finite set and let G be a permutation group on Ω.

Notation

Let ω ∈ Ω and g ∈ G, and moreover let Λ ⊆ Ω and H ≤ G.
Then Hω := {h ∈ H | ωh = ω} denotes the stabilizer of ω in H,
fixΛ(H) := {ω ∈ Λ | ωh = ω for all h ∈ H} denotes the fixed point set of H in Λ and we write fixΛ(g)
instead of fixΛ(⟨g⟩).
We write ωH for the H-orbit in Ω that contains ω.
Whenever n,m ∈ N, then we denote by (n,m) the greatest common divisor of n and m. Moreover we
write Zn (or sometimes just n) for a cyclic group of order n.

Lemma 2.1. Suppose that G has a nontrivial proper subgroup H such that the following holds: Whenever
1 ̸= X ≤ H, then NG(X) ≤ H.
Then G is a Frobenius group with Frobenius complement H.

Proof. This is Lemma 2.1 in [19] . �

Lemma 2.2. Suppose that G acts transitively on the set Ω and that α ∈ Ω. Let 1 ̸= X ≤ Gα. Then the
following hold:

(a) If α is the unique fixed point of X, then NG(X) ≤ Gα.
(b) If X has exactly two fixed points, then NGα

(X) has index at most 2 in NG(X).
(c) If X has exactly three fixed points, then NGα(X) has index at most 3 in NG(X).

Proof. Assertion (a) holds in any permutation group. As NG(X) acts on fixΩ(X), we see in (b) that
NG(X)/NGα(X) is isomorphic to a subgroup of S2. In (c) let K denote the kernel of the action of NG(X)
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on fixΩ(X). Then NG(X)/K is isomorphic to a subgroup of S3. If this factor group is isomorphic to
a proper subgroup of S3, then (c) holds. Otherwise we note that there is g ∈ NG(X) that fixes α and
interchanges the other two points in fixΩ(X). Hence g ∈ Gα and |NG(X) : NGα(X)| = 3. So again (c)
holds. �
Lemma 2.3. Suppose that G is a {2, 3}′-group and that G acts transitively, nonregularly on a set Ω
such that four point stabilizers are trivial. Then G is a Frobenius group.

Proof. This follows from Lemmas 2.2 and 2.1. �
Hypothesis 2.4. Suppose that (G,Ω) is such that G acts transitively, nonregularly on the set Ω, that
four point stabilizers are trivial and that some three point stabilizer is nontrivial.

Note that Hypothesis 2.4 implies that |Ω| ≥ 5 because nontrivial permutations on four or fewer points
can have at most two fixed points.

Lemma 2.5. If (G,Ω) satisfies Hypothesis 2.4 and ω ∈ Ω, then one of the following is true:

(1) |Gω| is even.
(2) Gω is a Frobenius group of odd order, where the Frobenius complements are three point stabi-

lizers.
(3) |fixΩ(Gω)| = 3 and |Gω| is odd.

Proof. We suppose that |Gω| is odd and that |fixΩ(Gω)| ̸= 3. Thus we need to show that the statements
in (2) hold, in particular that Gω is a Frobenius group.
Hypothesis 2.4 implies that there exists a set ∆ of size 3 such that ω ∈ ∆ and such that the point-wise
stabilizer H of ∆ in G is nontrivial. Let 1 ̸= X ≤ H. Then X acts semiregularly on Ω \∆ and NG(X)
leaves ∆ invariant. Since |Gω| is odd and |∆| = 3, this implies that NG(X) has odd order. Hence
|NG(X) : NH(X)| ∈ {1, 3} and this holds for all 1 ̸= X ≤ H.
Next we observe that if there is a nontrivial subgroup X of H such that |NG(X) : NH(X)| = 3, then
all g ∈ NG(X) \NH(X) act transitively on ∆; i.e. they fix no point of ∆.
Thus |NGω (X) : NH(X)| = 1 for all 1 ̸= X ≤ H. As |fixΩ(Gω)| ̸= 3, we know that H < Gω and
therefore Lemma 2.1 implies that Gω is a Frobenius group where H is a Frobenius complement. This is
our claim. �
We recall that a subgroup H of G is t.i. (short for ”trivial intersection“) if and only if, for all g ∈ G,
either H ∩Hg = 1 or Hg = H.

Corollary 2.6. Suppose that (G,Ω) satisfies Hypothesis 2.4 and that |Ω| ≥ 7. Let ω ∈ Ω and suppose
that Gω is a Frobenius group of odd order with a Frobenius complement H that is a three point stabilizer.
Let Λ := G/H (with the natural action of G by right multiplication). Then (G,Λ) satisfies Hypothesis
2.4. Moreover if h ∈ G# stabilizes Λ, then |fixΛ(h)| = 3.

Proof. As G is not a Frobenius group by Hypothesis 2.4 and the point stabilizers have odd order,
Lemma 2.1 implies that there exists some 1 ̸= X ≤ H such that |NG(H) : NH(X)| = 3. Now X acts
semiregularly on Ω \ fixΩ(H), and since |Ω| ≥ 7, this implies that the set-wise stabilizer of fixΩ(H) is
properly larger than H. Therefore |NG(H) : H| = 3. Also if h ∈ H ∩ Hg and H ̸= Hg, then h fixes
fixΩ(H) ∪ fixΩ(H

g) ̸= fixΩ(H) and hence h = 1 by Hypothesis 2.4. So H is t.i. and |NG(H) : H| = 3,
which implies our claim. �
2.1. Examples. Here we describe some series of examples for Hypothesis 2.4. In particular we classify
all possibilities where Ω has five or six elements.

Lemma 2.7. If (G,Ω) satisfies Hypothesis 2.4 and |Ω| ≤ 6, then one of the following is true:

(1) |Ω| = 5 and G = S5.
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(2) |Ω| = 6 and G = A6.
(3) |Ω| = 6 and A3 ≀ S2 ≤ G ≤ (S3 ≀ S2) ∩ A6 (two possibilities in total).

Proof. Hypothesis 2.4 implies that some element g ∈ G has three fixed points on Ω and that |Ω| ≥ 5.
In the following we view G as a subgroup of S6.

If |Ω| = 5, then g is a 2-cycle. As 5 is prime, the hypothesis that G is transitive implies that G is prim-
itive. Now G is a primitive permutation group on five points that contains a transposition, so G = S5

as stated in (1).

If |Ω| = 6, then g is a 3-cycle. Without loss g = (456), so g lies in the point stabilizer G1. The 2-cycles
in S6 have four fixed points, therefore Hypothesis 2.4 implies that (1, 2)S6 ∩G = ∅. If G acts primitively
on Ω, then it follows that G = A6 which leads to (2). Possibility (2) does in fact occur as an example,
as an inspection of the conjugacy classes shows. If G is not primitive on Ω, then, since G contains a
3-cycle, it is a subgroup of S3 ≀ S2. Now |G| = 6 · |G1| ≥ 18 which implies that A3 ≀ S2 ≤ G. On the other
hand G ̸= S3 ≀ S2 as G does not contain 2-cycles. Therefore G ≤ (S3 ≀ S2) ∩ A6 and (3) follows. �
Having considered small examples we also look at sharply 4-transitive permutation groups. We note
that any element of such a group that fixes four points is the identity element. Moreover a three point
stabilizer in such a group is transitive on the set of points that are not fixed, and in particular it is
nontrivial if the size of the set is at least 5. The next result is due to Jordan and can be found as
Theorem 3.3 in Chapter XII of [14].

Lemma 2.8. If G is sharply 4-transitive, then G is one of S4,S5,A6,M11.

Thus we see that S5,A6,M11 in their actions on 5, 6 or 11 points, respectively, are examples satisfying
Hypothesis 2.4.

Lemma 2.9. Suppose that P is a 3-group of order at least 27 and that H ≤ P is a subgroup of order 3
such that |CP (H)| = 9. Let Ω denote the set of right cosets of H in P . Then (P,Ω) satisfies Hypothesis
2.4.

Proof. Only the conjugates of elements of H have fixed points on Ω. If h ∈ H#, then |fixΩ(h)| =
|NP (H) : H|. The outer automorphism group of H has order coprime to 3, therefore NP (H) = CP (H)
and our hypothesis on |CP (H)| implies that |NP (H) : H| = 3. This proves our claim. �
We recall that a nonabelian p-group P is of maximal class if it possesses a p-element x such that
|CP (x)| = p2. Extraspecial p-groups of order p3 are examples of this. The 2-groups of maximal class
are dihedral, quaternion or semidihedral, whereas for p > 2 there are many other possibilities (see [12],
III.14). Lemma 2.9 implies that 3-groups of maximal class all give rise to examples for Hypothesis 2.4.
The next three classes of examples are variants of those introduced in [19].

Lemma 2.10. Let p be a prime and let A denote the additive group, M the multiplicative group, and
G the Galois group of a finite field of order 3p. Let G be the semidirect product (A : M) : G and
Gω := M : G. Let Ω denote the set of right cosets of Gω in G. Then (G,Ω) satisfies Hypothesis 2.4.

Proof. We note first that A is a regular normal subgroup of G in its action on Ω. Thus if g ∈ G#
ω , then

fixΩ(g) = |CA(g)|. Our claim follows as 1 and 3 are the only possible values for |CA(g)|. �
Lemma 2.11. Let F be a Frobenius group with kernel K and complement H and let Z be a cyclic group
of order 3. Let G := Z × F and let Ω be the set of right cosets of H. Then the pair (G,Ω) satisfies
Hypothesis 2.4.

Proof. The subgroup K has three orbits on Ω which are transitively permuted by Z and fixed set-wise
by elements of H. If h ∈ H#, then h fixes exactly one point on each K-orbit. Our claim follows. �
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We remark that in this last example the number of fixed points of an element is either 0 or 3.

Lemma 2.12. Let p, r be primes and let K be a field of order p3r. Let A and M be the additive
respectively the multiplicative group of K and let H be a subgroup of the Galois group of K of order 3.
Let Ω be the set of right cosets of M in G := (A : M) : H. Then (G,Ω) satisfies Hypothesis 2.4.

Proof. We first observe that A has three regular orbits in its action on Ω which are permuted transitively
by H; i.e. A o H acts regularly on H. If m ∈ M# and α ∈ fixΩ(m), then αH ⊆ fixΩ(m) because H
normalizes M and M is cyclic. The claim follows. �
We close this section with a result by Fukushima [8], generalizing a result of Rickman [22], which leads
to yet another fairly general class of examples.

Lemma 2.13. Let H be a finite group and α ∈Aut(H) of odd prime order. If the order of α is coprime
to |H| and if CH(α) is a 3-group, then H is solvable and more specifically H = O3,3′(H)CH(α). If
G := H o ⟨α⟩, if moreover Ω is the set of right cosets of ⟨α⟩ in G and |CH(α)| = 3, then the pair (G,Ω)
satisfies Hypothesis 2.4.

Proof. The first statement is the combined content of Theorem 1 and Proposition 3 of Fukushima [8],
whereas the second is a corollary of the first. �
2.2. More general properties following from our hypothesis.

Lemma 2.14. Suppose that Hypothesis 2.4 holds. Then |Z(G)| ∈ {1, 3}.

Proof. Let α ∈ Ω. As G acts faithfully on Ω, we know that Z(G) intersects Gα trivially. Let x ∈ Gα be
an element with exactly three fixed points. Then Z(G) ≤ CG(x) and hence Lemma 2.2 (c) implies that
|Z(G)| ∈ {1, 3}. �
Lemma 2.15. Suppose that Hypothesis 2.4 holds and let α ∈ Ω. Then the following hold:

(a) If some 2-element in Gα has exactly three fixed points on Ω, then Gα contains a Sylow 2-
subgroup of G.

(b) If some 3-element in Gα has exactly three fixed points, then 3 divides |Ω|. In particular, in this
case, Gα does not contain a Sylow 3-subgroup of G.

(c) For all primes p ≥ 5 that divide |Gα|, some Sylow p-subgroup of G is contained in Gα.

Proof. Suppose that x ∈ Gα is a 2-element with exactly three fixed points. As x has orbits of 2-power
lengths on the set of points that are not fixed, it follows that |Ω| is odd. Therefore |G : Gα| is odd and
Gα contains a Sylow 2-subgroup of G.
For (b) suppose that y ∈ Gα is a 3-element with exactly three fixed points on Ω. The remaining orbits
of y on Ω have 3-power lengths and therefore |Ω| is divisible by 3. This means that |G : Gα| is divisible
by 3 and in particular Gα does not contain a Sylow 3-subgroup of G.
Finally suppose that p ∈ π(Gα) is such that p ≥ 5. Let x ∈ Gα be an element of order p and let
x ∈ P ∈Sylp(G). Then Lemma 2.2 (b) implies first that Z(P ) ≤ Gα and then that P ≤ Gα. This
finishes the proof. �
Lemma 2.16. Suppose that Hypothesis 2.4 holds and that N EG is such that all N -orbits on Ω have
size 2. Let Ω̃ denote the set of N -orbits of Ω and let K denote the kernel of the action of G on Ω̃.
Then |Ω| ≤ 6 and (G,Ω) is as in Lemma 2.7.

Proof. By hypothesis N is a 2-group. If N has order 2, then N ≤ Z(G) and this contradicts Lemma 2.14.

Hence N has order at least 4. We set m := |Ω̃| and we simplify notation by denoting the elements of Ω by

1, ..., 2m and by expressing elements of G as elements from S2m. We write Ω̃ = {{1, 2}, ..., {2m−1, 2m}}.
Now it is sufficient to prove that m ≤ 3. Hence we assume otherwise. Our fixed point hypothesis tells us
that all elements from N# are a product of at least m− 1 disjoint transpositions. Suppose that t ∈ N#
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induces (1, 2) · · · (2m − 1, 2m) on Ω and let s ∈ N# be such that s ̸= t. On each element of Ω̃, only
one nontrivial action of s is possible, namely the action of the corresponding transposition. If t and s
both induce a transposition on {1, 2}, then s · t fixes 1 and 2. Otherwise s fixes 1 and 2 and we have
the same two possibilities on {3, 4}. As |Ω| is even, all elements from N# can only have zero or two

fixed points, so looking at the remaining elements of Ω̃ yields that s or s · t fixes at least four points on
Ω. This is impossible. A similar argument applies if we choose t to already have two fixed points on Ω.
Hence m ≤ 3 as stated. �

Lemma 2.17. Suppose that Hypothesis 2.4 holds. Let S ∈ Syl2(G) and α ∈ Ω. Then one of the following
holds:

(1) Gα has odd order.
(2) S is dihedral or semidihedral and |Sα| = 2. In particular Gα has a normal 2-complement.
(3) |S| ≥ 4, there is a unique S-orbit on Ω of length 2, and all other S-orbits have length |S|. Then

O2(G) = 1 or O2(G) is a fours group and |Ω| ≤ 6.
(4) |Ω| is odd.

Proof. Suppose that (1) does not hold. Then with Sylow’s Theorem we may suppose that Sα ̸= 1.
Let ∆ := αS and let n,m ∈ N0 be such that |Sα| = 2n and |S : Sα| = 2m. First suppose that m ≥ 2.
Let d denote the number of fixed points of Sα on ∆ and choose a ∈ N0 such that |∆| = d + a · 2n. As
n ≥ 1 and |∆| = 2m ≥ 4, we see that d = 2 and hence 2m = 2 · (1 + a · 2n−1). This implies that n = 1
and that a = 2m−1−1, so Lemma 2.2 (b) forces |CS(Sα)| ≤ 4. Thus either S is of order 2 or of maximal
class. For (2) we assume that S is quaternion. Then |S| ≥ 8 and |Sα| = 2, in particular Gα contains the
unique involution in S. But then Lemma 2.2 forces a subgroup of index 2 of S to be contained in Gα,
which is impossible. Now 11.9 in [12] yields that S is dihedral or semidihedral. Moreover Sα has order
2 which means that Gα has cyclic Sylow 2-subgroups and hence a normal 2-complement. This is (2).
Now we suppose that m ≤ 1. Then (4) holds or Sα has index exactly 2 in S. We look at the second
case more closely. By Lemma 2.2 we know that there exists β ∈ Ω such that α ̸= β, Sα = Sβ and all
elements in S\Sα interchange α and β. As Sα already has two fixed points and |Ω| is even in this case,
it follows that Sα has exactly two fixed points and hence it has regular orbits on the remaining points
of Ω. It follows that ∆ := {α, β} is the unique S-orbit of length 2 and all other orbits have length |S|.
As |Ω| > 2 by hypothesis, there exists a regular S-orbit of Ω and this means that we may choose g ∈ G
such that ∆∩∆g = ∅. Then D := S ∩Sg stabilizes the set ∆∪∆g of size 4. Moreover D acts faithfully
on this set by Hypothesis 2.4 and it fixes the subsets ∆ and ∆g. Thus |D| ≤ 4 and in particular O2(G)
has order at most 4. The point stabilizers have index 2 in O2(G) and hence O2(G) has orbits on Ω of
length 2. Now Lemmas 2.16 and 2.14 imply all the remaining details of (3). �

Lemma 2.18. Suppose that Hypothesis 2.4 holds. Let α ∈ Ω and suppose further that G is simple. Then
one of the following holds:

(1) Gα has odd order.
(2) Gα contains a Sylow 2-subgroup of G. In particular Gα contains an involution from every

conjugacy class.
(3) G has dihedral or semidihedral Sylow 2-subgroups, in particular G is isomorphic to A7 or M11

or there exists an odd prime power q such that G ∼=PSL2(q), PSU3(q) or PSL3(q).

Proof. We go through the cases in Lemma 2.17 with the special hypothesis that G is simple. The cases
(1) and (4) from Lemma 2.17 give exactly the conclusions (1) and (2) here. If (2) from the lemma holds,
then we use the classification of the corresponding groups by Gorenstein-Walter and Alperin-Brauer-
Gorenstein, respectively (see [10] and [1]). This gives the possibilities in (3), so it is only left to prove
that Case (3) of Lemma 2.17 does not occur in a simple group.
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Assume otherwise and let S ∈Syl2(G) be such that Sα ̸= 1 and S has order at least 4. Moreover we
assume that S has a unique orbit of length 2 on Ω and all other orbits have length |S|. We choose β ∈ Ω
such that {α, β} is the S-orbit of length 2, in particular Sα = Sβ has index 2 in S.
Let t ∈ S \ Sα. Then t interchanges α and β and it fixes all orbits of length |S|. As S is not cyclic
by Burnside’s Theorem (recall that G is simple), it follows that t acts as an even permutation on each
S-orbit and hence on Ω \ {α, β}. Thus t acts as an odd permutation on Ω. This means that G possesses
a normal subgroup of index 2. But |G| ≥ 4 and G is simple, so this is impossible. �

Lemma 2.19. Suppose that Hypothesis 2.4 is satisfied and that |Ω| is odd. Then one of the following
holds:

(1) G has odd order and 3 ∈ π(G).
(2) G has a strongly embedded subgroup.
(3) G has a normal 2-complement. In particular G is solvable.
(4) G has a normal subgroup G0 of index 2 that has a strongly embedded subgroup.

In particular, if G is simple, then G is isomorphic to A7, to M11 or there exists a prime power q such
that G is isomorphic to PSL2(q), to Sz(q), to PSU3(q) or to PSL3(q) (with q even).

Proof. Let α ∈ Ω. Then the transitivity of G on Ω yields that |Ω| = |αG| = |G : Gα| and hence
|G| = |Ω| · |Gα|. In particular Gα contains a Sylow 2-subgroup of G.
Suppose that Gα has odd order. Then G has odd order, but it is not a Frobenius group and therefore
Lemma 2.3 forces 3 ∈ π(G). This is (1).
Next suppose that Gα has even order and let S ∈Syl2(G) be contained in Gα. We look at the orbits of
S on Γ := Ω \ {α}. As |Ω| is odd, there are three possibilities: S fixes two points on Γ or every element
in S# is fixed point free on Γ or S has a unique orbit of length 2 on Γ. Suppose that every element of
S# fixes only α and let H := Gα. Let g ∈ G\H and suppose that x ∈ H ∩Hg is a 2-element. Then x
has at least two fixed points on Ω, namely α and αg, and in the present case this forces x = 1 (because
without loss x ∈ S). It follows that H∩Hg has odd order and hence H is a strongly embedded subgroup
of G. This is (2).
Next suppose that S fixes three points. Let ∆ denote this fixed point set. Let M0 denote the point-wise
stabilizer of ∆ and let M := NG(M0). We show that NG(M) is strongly embedded:
First Lemma 2.2 and the fact that S ≤ M0 yield that M has index at most 3 in NG(M). Moreover |Ω|
is odd, so in particular M does not have two orbits of length 3 on Ω, but it has a unique orbit of length
3 on Ω. (Otherwise S has too many fixed points.) Therefore NG(M) stabilizes ∆ and is hence contained
in M .
Next we let g ∈ G \M and we choose a 2-element t ∈ M ∩Mg. Without loss t ∈ S. Then t stabilizes
∆ and ∆g. These sets have size 3 and therefore t has a fixed point on both of them, moreover it fixes
∆ point-wise. But also t ∈ Sg and therefore t fixes ∆g point-wise. The previous paragraph showed that
∆ ̸= ∆g, hence t fixes at least four points and this forces t = 1. Now we have that M = NG(M) is
strongly embedded in G.
The last case is that S has a unique orbit {β, γ} of length 2 on Γ. Then a subgroup of index 2 of S fixes
three points and therefore the orbit lengths of S on Ω are 1, 2 and |S|.
If S is cyclic, then by Burnside’s Theorem (3) holds. So we suppose that S is not cyclic. Then, in the
action on Ω \ {α, β, γ}, the elements of S are even permutations. Thus the elements of S# are odd
permutations in their action on Γ (and on Ω), which means that G has a subgroup G0 of index 2. Let
S0 := S ∩ G0. If Ω ̸= αG0 , then G0 makes two orbits on Ω which are interchanged by an element in
NG(S0)\G0. But S∩G0 has different numbers of fixed points on these orbits, which is impossible. Thus
Ω = αG0 and so (G0,Ω) satisfies Hypothesis 2.4. Moreover S0 fixes three points of Ω and we already
showed that this implies that G0 has a strongly embedded subgroup.
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If G is simple, then G is nonabelian because of its nonregular action on Ω and hence only case (2) is
possible. Then the main result in [3] leads to the groups listed. �

Lemma 2.20. Suppose that Hypothesis 2.4 holds and that P ∈ Syl3(G). Let α ∈ Ω. Then one of the
following holds:

(1) Gα is a 3′-group.
(2) P is of maximal class, |Pα| = 3 and Pα fixes three points.
(3) |P : Pα| = 3, P has order at least 9 and P has exactly one orbit of size 3 on Ω, all remaining

orbits have size |P |. Moreover, in this case, O3(G) is elementary abelian of order at most 9.
(4) 3 does not divide |Ω|.

Proof. Suppose that (1) does not hold. Then 3 ∈ π(Gα) and so we may suppose that Pα ̸= 1.
Set ∆ = αP and let n ∈ N be such that |∆| = 3n. Let m ∈ N be such that |Pα| = 3m. First we suppose
that n ≥ 2. We set d := |fixΩ(Pα)| and note that 3n = d + a3m for some integer a. The fact that
α ∈ fixΩ(Pα) together with Hypothesis 2.4 implies that 1 ≤ d ≤ 3. Thus d = 3 as P is a 3-group, and
this means that Pα fixes three points of Ω. We obtain that 3n = 3 + a3m and thus n = 2, m = 1 and
a = 3n−1 − 1.
It follows that |Pα| = 3 and now Lemma 2.2 implies that |NP (Pα)| ≤ 9. As stated after Lemma 2.9, we
now have that P has maximal class. So we proved (2) in this case.
Next suppose that n ≤ 1. Then |P : Pα| ≤ 3 which means that Gα contains a subgroup of index at
most 3 of P . Therefore (3) or (4) holds, and it is left to analyze Case (3) more closely. First we notice
that |P | ≥ 9 and Pα fixes three points, so P has one orbit ∆ of size 3 (consisting of these three points)
and all other orbits are of size |P |. As |Ω| ≥ 5, there exists a regular P -orbit and hence we may choose
g ∈ G such that ∆∩∆g = ∅. Then D := P ∩P g stabilizes the set ∆∪∆g of size 6 and it acts faithfully
on it by Hypothesis 2.4. It follows that D is isomorphic to a subgroup of S6 and hence it is elementary
abelian of order at most 9. As O3(G) ≤ D, all statements in (3) are proved. �

Lemma 2.21. Suppose that Hypothesis 2.4 holds and let α ∈ Ω. If E(G) ̸= 1, then E(G) ∩Gα ̸= 1.

Proof. Assume that E(G) ̸= 1, but E(G) ∩Gα = 1 and let E be a component of G. Let x ∈ Gα be of
prime order p. First we show that x normalizes E:
Assume otherwise and let E1, ..., Ep denote the x-conjugates of E, where E = E1. Then L := E1 · · ·Ep is

an x-invariant product of components. Let e ∈ E. Then e · · · exp−1 ∈ CL(x). By Lemma 2.2 a subgroup
of index 2 or 3 of CL(x) is contained in Gα and so, by assumption, we see that e has order 2 or 3. It
follows that E is a {2, 3}-group. But this is a contradiction because E is not solvable.
Thus x normalizes E and Lemma 2.2 yields that Gα contains a subgroup of index 2 or 3 of CE(x). By
assumption (and as E is not nilpotent) CE(x) has order 2 or 3. If the order is 2, then [9] implies that E
is solvable, which is a contradiction. Hence |CE(x)| = 3. If o(x) ̸= 3, then the main result in [22] yields
that E is solvable again, which is impossible.
We deduce that o(x) = 3 and now Theorem 2 in [4] yields that E is solvable, which is again a contra-
diction. �

Lemma 2.22. Suppose that Hypothesis 2.4 holds and that E(G) ̸= 1. Then G has a unique component.

Proof. We assume otherwise. Let E denote a component of G and let L be a product of components
such that E(G) = E · L. With Lemma 2.21 we let α ∈ Ω and 1 ̸= e ∈ E(G) ∩Gα. Let a ∈ E and b ∈ L
be such that e = a · b. Lemma 2.2 implies that a subgroup of index at most 3 of CE(e) = CE(a) and of
CL(e) = CL(b), respectively, lies in Gα. Moreover Gα does not contain any normal subgroup of G and
hence Gα does not contain a component, again with Lemma 2.2. As G has more than one component
by assumption, it follows that all components intersect Gα trivially. In particular a, b /∈ Gα and the
groups CE(a) and CL(b) have order 2 or 3. The first case is impossible by Burnside’s Theorem, and in
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the second case the main result in [7] forces E ∼= L ∼=PSL2(7) and in particular Gα ∩E(G) = ⟨e⟩ and e
fixes three points of Ω. From the structure of PSL2(7), there is an involution t ∈ EL that inverts e and
hence fixes one of the three fixed points of e. Let γ denote this fixed point and let g ∈ G be such that
αg = γ. Then Gγ ∩ E(G) contains elements of order 3 and 2, which is impossible. �

Lemma 2.23. Suppose that Hypothesis 2.4 holds and that E is a component of G. Then one of the
following holds:

(a) There exists a power q of 2 such that E ∼=PSL2(q), |G : E| is prime and every element from
G\E induces a field automorphism on E. For all α ∈ Ω, we have that |Gα| = q · (q−1) · |G : E|
and moreover Eα does not contain any elements that fix three points. This includes the special
case where E ∼= A5 and G ∼= S5.

(b) There exists α ∈ Ω such that (E,αE) satisfies Hypothesis 2.4.

Proof. As E(G) ̸= 1 by hypothesis, we know from Lemmas 2.21 and 2.22 that E is the unique component
of G and that E intersects the points stabilizers nontrivially. Hence let α ∈ Ω and ∆ := αE . Then Eα ̸= 1
and therefore E acts transitively and nonregularly on ∆. Moreover E acts faithfully because E EG. As
E is a component and thus not solvable, we know that |∆| ≥ 5 and therefore (E,∆) satisfies Hypothesis
2.4.
Suppose that E does not have any element that fixes three points on ∆. Then (E,∆) satisfies Hypothesis
1.1 from [19] and in particular Z(E) = 1 by Lemma 2.8 in [19] and Lemma 2.14. Thus E is simple and
Theorem 1.2 in [19] applies. We refer to Theorem 5.6 in the same paper for details on the possible action
of E on ∆. We also note that Lemmas 2.2 (a) and (b) and 2.14 force F (G) = 1.

Case 1: E ∼= A5.
We know that E = F ∗(G) and hence G acts faithfully on E. As (E,∆) does not satisfy Hypothesis 2.4,
but (G,Ω) does, it follows that G ̸= E and hence G ∼= S5 as stated in (a).

Case 2: E ∼=PSL3(4).
Here the only possibility for the action is that Eα has order 5. In particular Eα is a Sylow subgroup of
E. A Frattini argument yields that G = ENG(Eα). As G ̸= E and |NE(Eα)| = 10, Lemma 2.2 implies
that some g ∈ G \ E is contained in Gα. Therefore 2 or 3 is contained in π(Gα). If 2 ∈ π(Gα), then by
Lemma 2.17 an index 2 subgroup of a Sylow 2-subgroup of G is contained in Gα. But this is impossible
because Eα has odd order. If 3 ∈ π(Gα), then also 2 ∈ π(Gα) by Lemma 2.2. (For information about
Aut(PSL3(4)) see for example [5].) We already excluded this.

Case 3: E ∼=PSL2(7).
We recall that Eα

∼= A4. The point stabilizers in PGL2(7) grow by a factor of either 2 or 1. Inspection
of the maximal subgroups of PGL2(7) shows that the former case does not happen. In the latter case
the centralizer order of the inner involution grows by a factor of 2 while the order of the point stabilizer
does not. This implies that the number of fixed points of the involution on Ω is 4, and this violates
Hypothesis 2.4.

Case 4: There exists a prime power q such that E ∼=PSL2(q).
Using Hypothesis 2.4 choose x ∈ Gα such that x fixes three points on Ω and induces an outer au-
tomorphism on E. Lemma 2.2 implies that a subgroup of index at most 3 of CE(x) is contained in
Eα.
First suppose that x induces a field automorphism. Then it follows from the possible structure of point
stabilizers that CE(x) is a solvable subfield subgroup and we see that 2 ∈ π(Eα). Moreover q is a power
of 2 or of 3. If q is odd, then Eα contains a fours group from CE(x) and this is impossible. If q is even,
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then Eα has order q · (q − 1). Moreover x induces an automorphism of prime order. Hence (b) holds in
this case.
Next suppose that x induces a diagonal automorphism. Then Gα contains an involution that fixes three
points, and hence Lemma 2.15 (a) forces Gα to contain a Sylow 2-subgroup of G, and in particular of
E. This is impossible because Eα does not contain a Sylow 2-subgroup of E.

Case 5: There exists a prime power q such that E ∼=Sz(q).
Let x ∈ G \E be such that x ∈ Gα and x fixes three points on Ω. Then x induces a field automorphism
on E and hence CE(x) is a subfield subgroup. Now any subfield group contains Sz(2), a group of order
20, and then Lemma 2.2 implies that Eα has an element of order 5. But we know from Theorem 5.6
in [19] that |Eα|2′ = (q − 1). Since (q − 1) is not divisible by 5 (because q is a power of 2 with odd
exponent), we see that E cannot be a Suzuki group.

These are all possible cases by [19], hence the proof is complete. �

Theorem 2.24. Suppose that Hypothesis 2.4 holds and that N is a minimal normal subgroup of G. Let
α ∈ Ω. Then one of the following holds:

(a) All Sylow subgroups of Gα have rank 1.
(b) N is a 2-group. Moreover N is a fours group whose involutions act without fixed points on Ω

or |N : Nα| = 2 and Nα fixes two points.
(c) N is a 3-group. Moreover G has Sylow 3-subgroups of maximal class or |N : Nα| = 3, Nα fixes

three points and |N | ≤ 9.
(d) N = E(G) and (N,αN ) satisfies Hypothesis 2.4 or N ∼= A5 or there exists a 2-power q such

that N ∼=PSL2(q).

Proof. The faithful action of G on Ω yields that N � Gα. We begin with the case where N is elementary
abelian. Let r be a prime such that N is an r-group and suppose that (a) does not hold. Let p ∈ π(Gα)
and suppose that Gα contains an elementary abelian subgroup X of order p2.
If r ≥ 5, then Lemma 2.15 (c) yields that r /∈ π(Gα) and hence the coprime action of X on N yields that
N = ⟨CN (x) | x ∈ X#⟩. It follows with Lemma 2.2 that N ≤ Gα. This is a contradiction. Therefore
r ∈ {2, 3}.
First suppose that r = 2. Then |N | ≥ 4 by Lemma 2.14. If p = 2, then 2 ∈ π(Gα). If p is odd, then
N = ⟨CN (x) | x ∈ X#⟩ by coprime action and so, applying Lemma 2.2, it follows again that 2 ∈ π(Gα).
Let S ∈ Syl2(G) and suppose that |N : Nα| ̸= 2. Then Lemma 2.17 yields that S is dihedral or semidi-
hedral. As G has no normal subgroup of order 2, we see that N is not cyclic, so it follows that N is a
fours group, that the involutions in N act without fixed points on Ω and that G/CG(N) is isomorphic
to S3. This is one of the cases in (b). Otherwise |N : Nα| = 2 and we let t ∈ N be such that t /∈ Gα. As
t normalizes Nα, but does not fix α, there must be a second point β ∈ Ω that is fixed by Nα and such
that t interchanges α and β. This is the other case in (b).

Next suppose that r = 3. If |N | = 3, then the second case in (c) holds. So we suppose that |N | ≥ 9 and
we argue as in the previous paragraph. If p = 3, then 3 ∈ Gα, and if p ̸= 3, then 3 ∈ Gα by coprime
action and Lemma 2.2. Now Lemma 2.20 yields the possibilities in (c). We note that, if |N : Nα| = 3
and y ∈ N is such that y /∈ Nα, then Nα must fix three points and y interchanges these three points in
a 3-cycle.
This concludes the case where N is solvable.

Next suppose that N is a product of components. Then E(G) ̸= 1 and hence Lemmas 2.22 and 2.21
yield that N is the unique component of G. Then (d) holds by Lemma 2.23. �
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Our preliminary results enable us to prove one of the statements in Theorem 1.3:

Lemma 2.25. Suppose that Hypothesis 2.4 holds. Then 3 ∈ π(G).

Proof. Assume otherwise, choose G to be a minimal counter-example and let α ∈ Ω. First we consider
the case where Gα has odd order. Let 1 ̸= H ≤ Gα be a three point stabilizer, fixing the distinct points
α, β and γ of Ω. Let 1 ̸= X ≤ H and g ∈ NG(X). As o(g) is coprime to 3 by assumption, the fixed
points of X cannot be interchanged by g in a 3-cycle. But the fact that point stabilizers have odd order
also implies that g cannot interchange two of the points α, β, γ and fix the third. Thus it fixes them all
and is hence contained in H. Now Lemma 2.1 forces G to be a Frobenius group, contrary to Hypothesis
2.4.
We conclude that Gα has even order.

(1) If Gα contains a Sylow 2-subgroup of G, then G has cyclic or quaternion Sylow 2-subgroups.

Proof. Suppose that Gα contains a Sylow 2-subgroup. Then O2(G) = 1, and moreover O3(G) =
1 by assumption. If E is a component of G, then one of the cases from Lemma 2.23 holds. The
first two cases are impossible by the assumption that 3 /∈ π(G), and in the third case the main
result of [24] yields that E/Z(E) is a Suzuki group. But this contradicts Lemma 4.3. Hence
E(G) = 1 and F ∗(G) = F (G) is a {2, 3}′-group. Looking at Theorem 2.24, we deduce that (a)
holds and therefore our claim follows. �

(2) G has a subgroup M of index 2.

Proof. First suppose that Gα contains a Sylow 2-subgroup of G and let T be a 2-subgroup of
G. Then T is cyclic or quaternion by (1) and therefore NG(T )/CG(T ) is a 2-group (recall that
3 /∈ π(G)). So Frobenius’ Theorem implies that G has a normal 2-complement and hence a
subgroup of index 2.

Now two cases from Lemma 2.17 remain, namely (2) and (3). First suppose that S ∈Syl2(G)
is dihedral or semidihedral. Then Frobenius’ Theorem is applicable again and G has a normal
2-complement, in particular a subgroup of index 2.

Finally suppose that Lemma 2.17 (3) holds and let β ∈ Ω be such that Sα = Sβ . Let
s ∈ S \ Sα. We already treated the case where S is cyclic, so we may suppose that o(s) ̸= |S|.
Then s induces a product of an even number of cycles of 2-power length on each regular S-orbit.
Moreover s interchanges α and β and therefore it induces an odd permutation on Ω. So again
G has a subgroup of index 2. �

(3) Let M be as in (2). Then M acts transitively on Ω.

Proof. Assume otherwise. Then M has two orbits on Ω which we denote by ∆1 and ∆2. Then
the elements in G \M interchange ∆1 and ∆2, so they have no fixed points. By Hypothesis 2.4
we find y ∈ Mα such that y fixes three points on Ω. We may choose y of prime order p and we
may suppose that α ∈ ∆1. If α is the unique fixed point of y on ∆1, then |∆1| ≡ 1 modulo p
and it follows that y also has a unique fixed point on ∆2. But then y cannot have three fixed
points in total, so this is impossible. With similar arguments it follows that, if y has two fixed
points on ∆1, then it has two or zero fixed points on ∆2, which again gives a contradiction.

Thus the only remaining possibility is that all fixed points of y are contained in ∆1. In
particular |∆1| ≡ 3 modulo p. Then y acts without fixed points on ∆2 and it follows that
|∆2| ≡ 0 modulo p. As |∆1| = |∆2|, this forces p = 3, which is impossible. This proves our
claim that M acts transitively on Ω. �

Let M be as in (2) and (3). Since 3 /∈ π(M) and G is a minimal counter-example, we know that (M,Ω)
does not satisfy Hypothesis 2.4. In particular the three point stabilizers in M are trivial, which forces
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G \M to contain elements with three fixed points. As |G : M | = 2, this implies that some involution
t ∈ G fixes exactly three points and hence |Ω| is odd by Lemma 2.15 (a). Now (1) yields that G has
cyclic or quaternion Sylow 2-subgroups, and this forces ⟨t⟩ ∈ Syl2(G). In particular M has odd order.
It follows with Lemmas 2.1 and 2.2 that M acts regularly on Ω or that M is a Frobenius group. In
the first case 3 = |fixΩ(t)| = |CM (t)|, contrary to the fact that 3 /∈ π(M). In the second case we let K
denote the Frobenius kernel of M . Then K acts regularly on Ω and t normalizes it, so we have the same
contradiction as above. �

When we study simple groups satisfying Hypothesis 2.4 (using the Classification of Finite Simple
Groups), we adapt some of Aschbacher’s notation from Section 9 of [2]. We introduce it here and
use it throughout the following sections.

Definition 2.26. Suppose that p, q ∈ π(G) are prime numbers and let H ≤ G be a point stabilizer in
G.

• We write p ⊢ q if and only if one of the following holds:
– q ≥ 5 and there exists a nontrivial p-subgroup X ≤ G such that q ∈ π(NG(X)).
– q = 2 and and there exists a nontrivial p-subgroup X ≤ G such that 4 divides |NG(X)|.
– q = 3 and and there exists a nontrivial p-subgroup X ≤ G such that 9 divides |NG(X)|.

• We write → for the transitive extension of ⊢.

Lemma 2.27. Suppose that Hypothesis 2.4 holds and that H ≤ G is a point stabilizer. Suppose further
that q ∈ π(G) and p ∈ π(H). If p ≥ 5 and p → q, then q ∈ π(H).

Proof. By definition of → it suffices to consider the case where p ⊢ q. Lemma 2.15 (c) gives that H
contains a Sylow p-subgroup of G. Then by Sylow’s Theorem there exists a nontrivial p-subgroup X of
H such that q (or 4 or 9) divides |NG(X)| and therefore Lemma 2.2 yields that q ∈ π(H). �

3. Alternating Groups

In this chapter we discuss what alternating or symmetric groups appear as examples for Hypothesis 2.4
and if so, then with what actions. We begin with some small cases and then bring Lemma 2.18 into
play. We use the notation that has been introduced at the end of the previous section.

Lemma 3.1. Suppose that G is isomorphic to A4 or to S4. Then there is no set Ω such that (G,Ω)
satisfies Hypothesis 2.4.

Proof. Assume otherwise and let α ∈ Ω and x ∈ G#
α be such that |fixΩ(x)| = 3. If x is a 2-element,

then Lemma 2.2 (a) yields that |Ω| is odd and hence |Ω| = 3. This is too small for Hypothesis 2.4. If
x is a 3-element, then Gα contains a Sylow 3-subgroup of G (because this has only order 3) and this
contradicts Lemma 2.15 (b). �

Lemma 3.2. Suppose that G is isomorphic to A5 or S5 and that Ω is a set such that (G,Ω) satisfies
Hypothesis 2.4. Then |Ω| = 15 and the action of G is as on the set of cosets of a Sylow 2-subgroup, or
G ∼= S5, |Ω| = 5 and G acts naturally.

Proof. The action of G on the set of cosets of a Sylow 2-subgroup satisfies Hypothesis 2.4, as does the
natural action of S5 on a set with five elements, so we need to show that these are the only possibilities.
Suppose that (G,Ω) satisfies Hypothesis 2.4 and let α ∈ Gα and x ∈ G#

α be such that |fixΩ(x)| = 3.
Assume that x is a 5-element. The nontrivial orbits of x have lengths divisible by 5 and hence |Ω| ≡ 3
modulo 5. The only divisor of |G| satisfying this property is 3, but then Ω is too small. The Sylow
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3-subgroups of G have order 3 and hence Lemma 2.15 (b) yields that x does not have order 3. Thus x
is a 2-element.
It follows from Lemma 2.15 (a) that |Ω| is odd, hence Gα has order 4 or 12 in the A5-case and order 8
or 24 in the S5-case. If G ∼= S5 and |Gα| = 24, then this is the natural action of S5.
Assume that G ∼= A5 and that |Gα| = 12. Then we first note that every double transposition in G has
exactly three fixed points on Ω. As |Ω| = 5, there are only 10 possibilities for fixed point sets for x.
But there are 15 double transpositions in G and hence we find an involution y ∈ G such that x ̸= y
and fixΩ(x) = fixΩ(y). Then x and y interchange the remaining two points and hence xy fixes all of Ω
point-wise, which is a contradiction.
Therefore, if Gα is not a 2-group, then the only example is S5 in its natural action. If Gα is a 2-group,
then it is a Sylow 2-subgroup and G acts as stated. �
Lemma 3.3. Suppose that G ∼= A6 and that Ω is a set such that (G,Ω) satisfies Hypothesis 2.4. Then
|Ω| ∈ {6, 15}. The action of G is natural as A6 on six points in the first case, and G acts as on the set
of cosets of a subgroup of order 24 in the second case, respectively.

Proof. Let α ∈ Ω and let x ∈ Gα be such that |fixΩ(x)| = 3. If x is a 5-element, then the subgroup
structure of G allows Gα to be of order 5, 10 or 60. However, this means that |Ω| ∈ {72, 36, 6} and these
numbers are not congruent to 3 modulo 5.
Next suppose that x is a 3-element. Then Lemmas 2.2 (c) and 2.15 (b) imply that Gα has even order
and that |Ω| is divisible by 3. Applying Lemma 2.2 to a 2-element in Gα yields that |Gα| is divisible by
4, hence by 12. This leads to the cases Gα

∼= A4,S4 or A5. Hence |Ω| ∈ {30, 15, 6}. However the first
case is impossible as an element of order 3 will fix six points on Ω. The other two possibilities give the
examples in the conclusion.
If x is a 2-element, then Gα has order 8 or 24 by Lemma 2.15 (a). The former case leads to the possibility
that |Ω| = 45. However in this case an involution fixes five points, which is impossible. The second case
is that Gα

∼= S4, which is one of our conclusions. �
Lemma 3.4. Suppose that G is almost simple, but not simple and that F ∗(G) ∼= A6. There does not
exist a set Ω such that (G,Ω) satisfies Hypothesis 2.4.

Proof. Let E := F ∗(G). Then Lemma 2.23 is applicable and we see that (a) and (b) cannot hold. So
(c) holds and we let α ∈ Ω be such that (E,αE) satisfies Hypothesis 2.4. In particular we know that
H := Eα

∼= A5 or S4 from Lemma 3.3.
In the former case, |Ω| = 6 or 12 whereas in the second case |Ω| = 15 or 30. If the action is on 6 or 15
points, then G ∼= S6 and one of the outer involutions has too many fixed points.
If the action is on 12 or 30 points, then an inner involution has four respectively six fixed points, ruling
out these possibilities as well. �
Lemma 3.5. Suppose that G ∼= A7 and that Ω is a set such that (G,Ω) satisfies Hypothesis 2.4. Then
either |Ω| = 15 and the action of G is as on the set of cosets of a subgroup isomorphic to PSL2(7),
or |Ω| = 360 and G acts on the set of cosets of a Sylow 7-subgroup. In the first case the three point
stabilizer contains a Sylow 2-subgroup of G.

Proof. Let α ∈ Ω and x ∈ Gα be such that |fixΩ(x)| = 3. First assume that x has order 7. Then |Ω| ≡ 3
modulo 7 and, as |Ω| ≥ 4, this only leaves the possibilities 10, 24, 45 or 360. There are no subgroups
of G of index 10, 24 or 45, ruling out these cases. The normalizer of a Sylow 7-subgroup has index 360
and this yields the second example.
Next assume that x has order 5. Then Lemma 2.2 yields that some point stabilizer contains a subgroup
of order 20, so we may suppose that 20 divides |Gα|. Moreover |Ω| ≡ 3 modulo 5 and 7 /∈ π(Gα) by
the subgroup structure of A7. In particular 7 divides |Ω|. This only leaves the possibility |Ω| = 63 and
|Gα| = 40. But G does not have a subgroup of this order.
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We continue with the case where x has order 3. Then Lemmas 2.2 and 2.15 (b) yield that Gα has even
order and that |Ω| is divisible by 3. From the centralizer of an involution in Gα and Lemma 2.2 we
obtain that Gα contains a subgroup isomorphic to A4. Thus Gα is isomorphic to A4, S4, A5, S5 or
PSL2(7). Correspondingly, |Ω| ∈ {210, 105, 42, 21, 15}.
Assume that Gα ≃ A4 and |Ω| = 210. Let V ≤ Gα be a fours group. Then NG(V ) contains a subgroup
of order 9 of which a subgroup A of order 3 centralises V . Each involution in V has exactly two fixed
points, hence A fixes these two points and therefore A ≤ Gα. It follows that 9 divides Gα, which is
contradiction. With the same argument we exclude the case where Gα ≃ A5 and |Ω| = 42.
Next assume that Gα ≃ S4 and |Ω| = 105. Then every involution has one or three fixed points. The
second case will be treated below. In the first case Lemma 2.2 forces Gα to contain a Sylow 2-subgroup
of G, which is impossible. With the same argument we exclude the case where Gα ≃ S5 and |Ω| = 21.
Finally suppose that x is a 2-element. Then Gα contains a Sylow 2-subgroup of G by Lemma 2.15 (a)
and hence 3 ∈ π(Gα) by Lemma 2.2. This means that 24 divides |Gα| and the only new case is Gα

∼= A6.
But then G acts as it does naturally on seven points; this is impossible because one conjugacy class of
3-elements has four fixed points in this action.
It follows that the only possibility is that Gα

∼=PSL2(7). Then Lemma 2.2 and the fact that 9 does not
divide |Gα| imply that the three point stabilizer contains a Sylow 2-subgroup of G. �

Corollary 3.6. Suppose that G ∼= S7. Then there is no set Ω is a set such that (G,Ω) satisfies Hypothesis
2.4.

Proof. Let E := F ∗(G) ∼= A7. Then Lemma 2.23 is applicable and we see that (c) holds. Let α ∈ Ω
be such that (E,αE) satisfies Hypothesis 2.4. Then Lemma 3.5 yields that Eα ≃PSL2(7) and that a
Sylow 2-subgroup of E is contained in a three point stabilizer, or that Eα is a Sylow 7-subgroup of G.
In the first case, as |G : E| = 2, Lemma 2.2 implies that a Sylow 2-subgroup of G is contained in a
point stabilizer. Therefore |Gα| = 2 · |Eα| = 24 · 3 · 7. Let t ∈ Gα \Eα be an involution. Then |CG(t)| is
divisible by 5, and this contradicts Lemma 2.2 because 5 /∈ π(Gα).
In the second case, as |G : E| = 2, Lemma 2.2 implies that Gα contains an involution t. However then
Lemma 2.2 yiels that CG(t) ∩ Eα ̸= 1, contradicting the fact that Eα ∈Syl7(G).

�

Lemma 3.7. Suppose that Hypothesis 2.4 holds and that G is an alternating group of degree at least 8.
Let α ∈ Ω. Then Gα has odd order or it contains a Sylow 2-subgroup of G.

Proof. This follows immediately from Lemma 2.18. �

Lemma 3.8. Suppose that G ∼= A8 and that Ω is a set such that (G,Ω) satisfies Hypothesis 2.4. Then
|Ω| = 2880. The action of G is as on the set of cosets of a Sylow 7-subgroup.

Proof. Let α ∈ Ω and x ∈ Gα be such that |fixΩ(x)| = 3. First we suppose that Gα has odd order and
we choose x of prime order p. Then p ̸⊢ 2 by Lemma 2.27. If p = 7, then |Ω| ≡ 3 modulo 7 and |Ω| ≥ 5,
so in this case we only have the possibilities that |Gα| = 45 or |Gα| = 2880. The former is impossible,
whereas the latter yields our example.
As 5 ⊢ 2 and 3 ⊢ 2, we see that p ̸= 5 and p ̸= 3, so this case is finished.
Using Lemma 3.7 we now have that Gα contains a double transposition t. Then Lemma 2.2 yields that
32 divides |Gα|. Now we look at the normalizer of a fours group in Gα and deduce that 3 ∈ π(Gα). This
gives two possibilities: Gα is contained in a subgroup isomorphic to 23 :PSL3(2) or to 24 : (S3 × S3).
Hence |Ω| ∈ {35, 105, 210}. However in all of these cases the involutions have at least six fixed points,
so this does not occur. �

Corollary 3.9. Suppose that G ∼= S8. Then there is no set Ω such that (G,Ω) satisfies Hypothesis 2.4.
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Proof. Let E := F ∗(G) ∼= A8. First we note that Lemma 2.23 (c) holds and we let α ∈ Ω be such that
(E,αE) satisfies Hypothesis 2.4. Moreover Gα ∩ E is a Sylow 7-subgroup of G.
Thus, as |G : E| = 2, Lemma 2.2 implies that Gα contains an involution t. However then Lemma 2.2
implies that CG(t) ∩ Eα ̸= 1, contradicting the fact that Eα ∈Syl7(G). �

Lemma 3.10. Suppose that G is isomorphic to A9 or S9. Then there is no set Ω such that (G,Ω)
satisfies Hypothesis 2.4.

Proof. First suppose that G ∼= A9 and assume that Ω is a set such that (G,Ω) satisfies Hypothesis 2.4.
We let α ∈ Ω and begin as follows:

(∗) Gα does not contain a 3-cycle.

Proof. Assume otherwise. Then Gα contains an A6 (by Lemma 2.2), in particular Lemma 3.7 yields
that G contains involutions from both conjugacy classes. Then Lemma 2.2 implies that 25 · 33 · 5 divides
|Gα|. But there is no maximal subgroup of G that could contain Gα now. �

Suppose first that Gα has odd order. Let x ∈ Gα be of prime order p and such that |fixΩ(x)| = 3. We
will use that p ̸⊢ 2 by Lemma 2.27. Then p ̸= 7 because 7 ⊢ 2 and similarly p ̸= 5. Hence p = 3 and x is
not the product of two 3-cycles, by Lemma 2.2. If x is the product of three 3-cycles, then x is 3-central
and therefore Gα contains a subgroup of order 33. In particular Gα contains a 3-cycle, contrary to (∗).
Lemma 3.7 yields that Gα contains a double transposition. Applying Lemma 2.2 to its centralizer gives
that Gα has a subgroup isomorphic to A5, contrary to (∗).
Now suppose that G ∼= S9 and let E := F ∗(G) ∼= A9. Then by Lemma 2.23 there is some α ∈ Ω such
that (E,αE) also satisfies Hypothesis 2.4. But this is impossible by the previous paragraph. �

Lemma 3.11. Suppose that G is isomorphic to A10 or S10. Then there is no set Ω such that (G,Ω)
satisfies Hypothesis 2.4.

Proof. Assume otherwise and let α ∈ Ω.
As in the previous lemma, we begin with the case where G ∼= A10. The special role of 3-cycles will be
key once more.

(∗) Gα does not contain a 3-cycle.

Proof. Assume otherwise. Then Gα contains a subgroup H ∼= A7 (by Lemma 2.2). In particular |Ω| ≤
24 · 32 · 5. Let β ∈ Ω be such that β ̸= α and let ∆ := βH . In its action on ∆, every nontrivial element
of H has at most two fixed points, and moreover H does not act regularly. But we proved in Lemma
3.5 in [19] that A7 does not allow such an action. Hence this is impossible. �

Now we suppose that Gα has odd order and we let x ∈ Gα be of prime order p. Then p ̸⊢ 2 by Lemma
2.27. In particular p ̸= 7 and p ̸= 5. If p = 3, then we first look at the case where x is a product of
three 3-cycles. Here x is 3-central and therefore Gα contains a subgroup of order 33. In particular Gα

contains a 3-cycle, contrary to (∗).
If x is the product of two 3-cycles, then Lemma 2.2 yields that Gα has even order, contrary to our
assumption in this case. By (∗) x is not a 3-cycle. So this case is finished and by Lemma 3.7 it remains
to consider the case where Gα contains a Sylow 2-subgroup of G. Then Lemma 2.2, applied to a double
transposition, yields that Gα contains an A6. But this is impossible by (∗).
If G ∼= S9, then the previous paragraph and Lemma 2.23 give the result. �

Lemma 3.12. Suppose that n ≥ 11, that G ∼= Sn or An and that Ω is a set such that (G,Ω) satisfies
Hypothesis 2.4.
Then the order of a point stabilizer in G is not divisible by 3.
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Proof. Assume otherwise and let α ∈ Ω. We show that our hypothesis implies that Gα contains a 3-cycle.
Throughout we use that, if m ≥ 5, then Am does not have subgroups of index 2 or 3. This will play a
role when applying Lemma 2.2.
We first note that Gα contains a 3-cycle if it contains a double transposition, by Lemma 2.2, because
the centralizer of a double transposition in G contains A7. Thus it is left to prove our statement in the
case where Gα has odd order, by Lemma 3.7.
Let x ∈ Gω be an element of order 3 and suppose that k ≥ 2 is such that x is a product of k cycles of
length 3. If n− 3 · k ≥ 4, then CG(x) contains a fours group or a subgroup isomorphic to A5, which is
impossible. Therefore n − 3 · k ≤ 3. The structure of CAn(x) is ((3k : Sk) × Sn−3·k) ∩ An and thus, if
k ≥ 4, then again CG(x) contains a fours group. Thus k ≤ 3 and we obtain that n ≤ 3 + 3k ≤ 12.
If n = 12, then CG(x) contains a subgroup of structure ((33 : S3) × S3) ∩ A12 and hence Lemma 2.2
implies that Gα contains a 3-cycle or a double 3-cycle. In the second case we change x to such a double
3-cycle. Its centralizer contains an A5, so this is a contradiction. If n = 11, then CG(x) still contains
a subgroup of structure (33 : S3) and thus, with Lemma 2.2, it follows once more that Gα contains a
3-cycle.
As G contains a subgroup isomorphic to A11, it is ninefold transitive, and so we may suppose that
x = (1, 2, 3). It follows from Lemma 2.2 that Gα contains a subgroup isomorphic to An−3 and hence,
without loss, the 3-cycle y := (4, 5, 6). The same argument yields that CG(y) ≤ Gα. Now we deduce
that Gα ≥ ⟨CG(x), CG(y)⟩ ∼= An, which contradicts the fact that G acts faithfully on Ω. �

Theorem 3.13. Suppose that n ≥ 11 and that G ∼= An or Sn. Then there is no set Ω such that (G,Ω)
satisfies Hypothesis 2.4.

Proof. Assume that Ω is a set such that (G,Ω) satisfies Hypothesis 2.4. Let α ∈ Ω, let p be a prime and
let x ∈ Gα be a p-element. Then there exists k ∈ N such that x is a product of k cycles of length p. Now
CG(x) contains a subgroup of structure pk : Sk×An−p·k if p is odd and of structure (2k : Sk×Sn−2·k)∩An

otherwise.
Assume that n − p · k ≥ 3. Then Lemma 2.2 implies that CG(x) ∩ Gα contains a 3-cycle, contrary to
Lemma 3.12.
Therefore n− p · k ≤ 2, so 11 ≤ n ≤ 2 + p · k. First we assume that p = 2. Then Gα contains a double
transposition t by Lemma 3.7. As n ≥ 11, we see that CG(t) contains a subgroup isomorphic to A7,
which is a perfect group of order divisible by 3. Together with Lemma 2.2 this contradicts Lemma 3.12.
This means that Gα has odd order.
With Lemma 3.12 it follows that p > 3. Then Lemma 2.15 (c) implies that Gα ∩ An contains a full
Sylow p-subgroup P of G. Thus Gα ∩ An contains a p-cycle, say y. If n− p > 3, then CGα(y) contains
a double transposition by Lemma 2.2, and this contradicts the fact that Gα has odd order.
Therefore n− p ≤ 3 and this property holds for all prime divisors p of |Gω|.
As n ≥ 11, the above property forces p ≥ 8. But p is prime and so we have that p ≥ 11. In particular
|NG(⟨x⟩) : ⟨x⟩| ≥ p−1

2 ≥ 5 and it follows that |Gω ∩ NG(⟨x⟩)| is divisible by a prime r such that
2 · r ≤ p− 1 ≤ n. This implies r ≤ n− r. We know that r ̸= 2 and r ̸= 3 (by Lemma 3.12 and because
Gα has odd order), so 5 ≤ r ≤ n − r. We proved in the previous paragraph that r satisfies n − r ≤ 2.
Now this is impossible. �

The next result collects all the information from this chapter.

Theorem 3.14. Let n ∈ N and suppose that G is isomorphic to An or to Sn. If Ω is a set such that
(G,Ω) satisfies Hypothesis 2.4, then n ∈ {5, 6, 7, 8} and one of the following holds:

(1) n = 5, G ∼= A5, |Ω| = 15 and the action of G is as on the set of cosets of a Sylow 2-subgroup.
(2) n = 5, G ∼= S5, |Ω| = 5 and G acts naturally.
(3) n = 6, G ∼= A6, |Ω| = 6 and G acts naturally.
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(4) n = 6, G ∼= A6, |Ω| = 15 and G acts as on the set of cosets of a subgroup of order 24.
(5) n = 7, G ∼= A7, |Ω| = 15 and the action of G is as on the set of cosets of a subgroup isomorphic

to PSL2(7).
(6) n = 7, G ∼= A7, |Ω| = 360 and the action of G is as on the set of cosets of a Sylow 7-subgroup.
(7) n = 8, G ∼= A8, |Ω| = 2880 and the action of G is as on the set of cosets of a Sylow 7-subgroup.

Proof. Theorem 3.13 and Lemma 3.1 imply that n ∈ {5, 6, 7, 8}. Moreover S7 and S8 do not occur by
Lemmas 3.4, 3.6 and 3.9.
The possibilities are then listed in Lemmas 3.2, 3.3, 3.5 and 3.8. �

4. Lie type groups

We organize our analysis around Lemma 2.18 and begin with the almost simple groups where the
normalizers of Sylow 2-subgroups are strongly embedded. Then we consider groups with dihedral or
semidihedral Sylow 2-subgroups and finally those groups where we know from the outset that |Gω| is
odd.
We record a general lemma, which is a consequence of Lemma 2.1 for use in this section.

Lemma 4.1. Suppose that (G,Ω) satisfies Hypothesis 2.4 with |Ω| ≥ 7 and suppose that α, β, γ ∈ Ω are
pair-wise distinct and such that 1 ̸= H := Gα ∩Gβ ∩Gγ . Then there exists a subgroup 1 ̸= X ≤ H and
an element g ∈ NG(X) \X such that 3 divides o(g), or Gα has even order.

Proof. The nonidentity subgroups X of H fix the elements of ∆ := {α, β, γ} and act semiregularly on
Ω\∆. Thus for every such X we see that NG(X) acts on ∆ with kernel NH(X), and |NG(X) : NH(X)| ≤
3 by Lemma 2.2 (c).
Suppose, for all nontrivial subgroups X of H, that (|NG(X) : NH(X)|, 3) = 1.
If 1 ̸= X ≤ H is such that |NG(X) : NH(X)| = 2, then NG(X) has even order and a fixed point on ∆
which is one of our conclusions.
If H has no nontrivial subgroup X such that |NG(X) : NH(X)| = 2, then for all these subgroups
NG(X) ≤ H. Since 1 ̸= H ̸= G, it follows with Lemma 2.1 that G is a Frobenius group. But this
contradicts Hypothesis 2.4. �
4.1. Groups with strongly embedded Sylow 2-subgroup normalizers. The simple groups of
Lie type considered in this section are those where the normalizers of Sylow 2-subgroups are strongly
embedded. We consider them in individual lemmas.

Lemma 4.2. Suppose that q is power of 2 and that G =PSL2(q). If q ̸= 4, then there is no set Ω such
that (G,Ω) satisfies Hypothesis 2.4.

Proof. We note that PSL2(4) ∼=PSL2(5) ∼= A5 (which has been treated in Lemma 3.2) and that
PSL2(2) ∼= S3 (which does not satisfy Hypothesis 2.4). Therefore we may suppose that q ≥ 8. We
assume that the lemma is false and let Ω be such that (G,Ω) satisfies Hypothesis 2.4. Let ω ∈ Ω.
First we suppose that |Ω| is odd. Then Gω contains a Sylow 2-subgroup S of G. Now |NG(S)/S| =
q − 1 ≥ 7 > 3, so Lemma 2.2 implies that Gω contains an element x of order (q − 1)/(q − 1, 3). If
(q − 1, 3) = 1, then Gω = NG(S), as NG(S) is maximal in G. If (q − 1, 3) ̸= 1, then we note that
NG(⟨x⟩) is dihedral of order 2(q − 1). Lemma 2.2 implies that either |Gω ∩NG(⟨x⟩)| = q − 1, in which
case Gω = NG(S), or |Gω ∩NG(⟨x⟩)| = 2(q− 1)/3, in which case Gω contains an involution which does
not lie in S. As S together with any involution t ̸∈ S generates G, we see that the latter cannot happen
and that Gω = NG(S). Thus (G,Ω) appears in the conclusion of Theorem 1.2 of [19], and in particular
no nonidentity element of G has three fixed points on Ω. This is a contradiction.
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Thus we may now suppose that |Ω| is even. If S ∈Syl2(G), then S is elementary abelian of order at
least 8 and thus Lemma 2.18 implies that Gω has odd order. Inspection of the maximal subgroups of G
yields that Gω is cyclic of order dividing q − 1 or q + 1. This means that, if x ∈ Gω, then

|FΩ(x)| = |NG(⟨x⟩) : Gω| ≥ |NG(Gω) : Gω| ∈ {2 · q − 1

|Gω|
, 2 · q + 1

|Gω|
}.

But |FΩ(x)| ≤ 3 and therefore |Gω| ∈ {q − 1, q + 1}. This means that (G,Ω) appears in the conclusion
Theorem 1.2 of [19]. In particular no nonidentity element of G has three fixed points on Ω, contrary to
our assumption. �

As a corollary of Lemma 2.25 we obtain:

Lemma 4.3. Let q be a power of 2 such that q ≥ 8, and suppose that G =Sz(q). Then there is no set
Ω such that (G,Ω) satisfies Hypothesis 2.4.

Prior to proving our next lemma we note that the group PSU3(2) is a Frobenius group of order 72, and
in particular it does not lead to any examples for Hypothesis 2.4.

Lemma 4.4. Let q ≥ 4 be a power of 2 and let G =PSU3(q).
Let Λ be the set of cosets of a cyclic subgroup of order q2 − q + 1/(3, q + 1) of G. Then (G,Λ) satisfies
Hypothesis 2.4, and this is the unique example for G.

Proof. Let Ω be such that (G,Ω) satisfies Hypothesis 2.4. We show that the point stabilizers are cyclic
of order q2 − q + 1/(3, q + 1) and that the action described in the lemma does in fact give an example.
Let ω ∈ Ω. We first consider the situation where |Ω| is odd; i.e. S ≤ Gω for some S ∈ Syl2(G).
The group NG(S)/S is cyclic of order q2 − 1, which implies by Lemma 2.2 that Gω also contains a
subgroup of order ((q + 1)/(q + 1, 3))2 ̸= 1. However NG(S) is strongly embedded in G, so the proper
overgroups of S in G are contained in NG(S). Thus Gω = G, which is impossible. Now |Ω| is even.
Next we note that S is neither dihedral nor semidihedral, so Lemma 2.18 implies that Gω has odd order.
The elements of G of odd order are conjugate to elements of tori of orders q2 − 1, (q + 1)2/(q + 1, 3) or
(q2 − q + 1)/(q + 1, 3).
First suppose that p ∈ π(Gω) is such that p divides q− 1. Then p ⊢ r for all divisors r of q+1/(3, q+1)
and Lemma 2.27 yields that all these primes r divide |Gω|. Thus if p ∈ π(Gω) divides (q2 − 1), then
Lemma 2.2 implies that ((q + 1)/(q + 1, 3))2 divides |Gω|. This means that Gω contains an element y
with CG(y) of structure (q + 1)×PSU2(q) and hence Gω contains a subgroup isomorphic to PSU2(q).
This contradicts the fact that |Gω| is odd.
Thus no p ∈ π(Gω) divides q

2 − 1, which implies that all p ∈ π(Gω) divide q2 − q + 1/(3, q + 1). Now if
x ∈ Gω has prime order p, then CG(x) is cyclic of order q

2− q+1/(3, q+1), and |NG(⟨x⟩) : CG(x)| = 3.
As 3 divides q2 − 1, but not |Gω|, this yields that Gω = CG(x).

The previous arguments show that there is at most one possibility for the action of G on Ω. Now let Λ be
the set of cosets of CG(x) inG. We show that this actually gives an example. Since (q+1, q3+1) = 3(q+1),
we see that CG(y) = CG(x) for all y ∈ CG(x)

#.
Therefore |fixΛ(y)| = |NG(⟨y⟩) : CG(x)| = |NG(CG(x)) : CG(x)| = 3, which shows that (G,Λ) satisfies
Hypothesis 2.4 as claimed. �

4.2. Groups with dihedral or semidihedral Sylow 2-subgroups. The simple groups of Lie type
considered in this section are those whose Sylow 2-subgroups are dihedral or semidihedral. Again we
look at the corresponding series of groups in individual lemmas.

Lemma 4.5. Suppose that q is a power of an odd prime and that G =PSL2(q). Then (G,Ω) satisfies
Hypothesis 2.4 if and only if one of the following is true:
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(i) G ∼=PSL2(7) ∼=PSL3(2) with |Ω| = 7 and Gω
∼= S4.

(ii) G ∼=PSL2(7) ∼=PSL3(2) with |Ω| = 24 and Gω is cyclic of order 7.
(iii) G ∼=PSL2(11) with |Ω| = 11 and Gω

∼= A5.

Proof. We note that PSL2(5) ∼= A5, PSL2(9) ∼= A6 and that PSL2(3) ∼= A4 does not give rise to any
example by Lemma 3.1. Therefore we may assume that q = 7 or q ≥ 11. We also assume that (G,Ω)
satisfies Hypothesis 2.4.
The full table of marks of PSL2(7) and PSL2(11) is available in GAP (see [23]) and these confirm our
claim. Thus we may assume that q ≥ 13. Let ω ∈ Ω.
If r ∈ π(Gω) is a divisor of (q+1)/2 and if x ∈ Gω has order r, then NG(⟨x⟩) is dihedral of order q+1.
As in the proof of Lemma 4.2 this implies that Gω is cyclic of order (q + 1)/2 or (q − 1)/2. This action
occurs in the conclusion of Theorem 1.2 of [19], contradicting Hypothesis 2.4.
Now if r ∈ π(Gω) and (q, r) ̸= 1, then r ⊢ p for all divisors p of (q − 1)/2. Thus we assume that Gω

contains an element x of order dividing (q − 1)/2. As NG(⟨x⟩) is dihedral of order (q − 1), Lemma
2.2 implies that Gω contains a subgroup of index at most 3 of this normalizer. Now assume that Gω

contains an involution t inverting x. Then CGω (x) and CGω (t) generate G (by the subgroup structure of
G). This is impossible. The only overgroups of ⟨x⟩ are conjugates of B, the Borel subgroup of G, or the
dihedral group of order (q − 1). The latter possibility is ruled out because no involution in Gω inverts
x, and the possibility Gω = B is ruled out because the action of G on the set of cosets of B occurs in
the conclusion of Theorem 1.2 of [19]. Thus Gω is cyclic of order (q − 1)/2 but again this possibility
occurs in the conclusion of the main theorem of [19]. This proves that PSL2(q) for q ≥ 13 does not yield
examples satisfying Hypothesis 2.4. �
Lemma 4.6. Suppose that p is an odd prime, that q = pa with a ∈ N and that G =PSU3(q). Let Λ be
the set of cosets of a cyclic subgroup of order q2− q+1/(3, q+1) of G. Then (G,Λ) satisfies Hypothesis
2.4, and this is the unique example for G.

Proof. Let Ω be such that (G,Ω) satisfies Hypothesis 2.4. We show that the point stabilizers are cyclic
of order q2 − q + 1/(3, q + 1) and that the action described in the lemma does in fact give an example.
Let ω ∈ Ω. For q = 3 our claim follows from inspection of the table of marks in GAP (see [23]). So we
may suppose that q ≥ 5.
If t ∈ Gω is an involution, then CG(t) contains a subgroup isomorphic to SL2(q). But SL2(q) is perfect
because q ≥ 5, and therefore Lemma 2.2 implies that Gω has a subgroup isomorphic to SL2(q). Let
P ≤ Gω be such that P is isomorphic to a Sylow p-subgroup of SL2(q). Then Gω contains an index
three subgroup of NG(P ), again by Lemma 2.2.
If p > 3, then Lemma 2.15 (c) implies that Gω contains a Sylow p-subgroup of G, and if p = 3, then a
straightforward computation shows that a torus in NG(P ) acts transitively on the commutator factor
group of Sylp(NG(P )). In this case Gω contains a Sylow p-subgroup of NG(P ), and hence of G, again.
This is impossible because a subgroup of G isomorphic to SL2(q) together with a Sylow p-subgroup
generates all of G.
So we may now suppose that |Gω| is odd. If p ∈ π(Gω), then p ⊢ r for every prime divisor r of
q2 − 1/(9, q2 − 1) and hence Lemma 2.27 implies that all these primes r divide |Gω|. From the existence

of tori of order (q2− 1)/(3, q+1) and (q+1)2/(3, q+1) it follows that ( (q+1)
(3,q+1) )

2 divides |Gω|, whenever
p or a divisor of q2− 1 divides |Gω|. Thus there exist commuting elements x1, x2 ∈ Gω with centralizers
containing a subgroup isomorphic to SL2(q) and such that G = ⟨CG(x1)

′, CG(x2)
′⟩. However, Lemma

2.2 then forces G = Gω. This is a contradiction.
We deduce that no prime p ∈ π(Gω) divides q

2−1. This means that they all divide q2−q+1/(3, q+1). Let
x ∈ Gω be of prime order p. Then CG(x) is cyclic of order q

2−q+1/(3, q+1), and |NG(⟨x⟩) : CG(x)| = 3.
But 3 does not divide Gω, so this implies that Gω = CG(x).
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These arguments show that there is at most one possibility for the action of G on Ω. Now let Λ be the
set of cosets of CG(x) in G.
As (q + 1, q3 + 1) = 3(q + 1), it follows that CG(y) = CG(x) for all y ∈ CG(x)

#. Therefore |fixΛ(y)| =
|NG(⟨y⟩) : CG(x)| = |NG(CG(x)) : CG(x)| = 3 which shows that (G,Λ) satisfies Hypothesis 2.4. �

Lemma 4.7. Let G =PSL3(q) with q odd. If (G,Ω) satisfies Hypothesis 2.4, then for all ω ∈ Ω the
group Gω is cyclic of order (q2 + q + 1)/(3, q − 1). Moreover |NG(Gω)| = 3 · |Gω| and (|Gω|, 3) = 1.

Proof. Inspection of the table of marks in GAP establishes our claim for q = 3. Thus we may assume
that q ≥ 5. Let ω ∈ Ω.
If r ∈ π(Gω) and r is a divisor of q(q2 − 1), then r ⊢ s for all prime divisors s of q − 1. Thus in every
such case a subgroup of index at most 3 of a split torus T of order (q − 1)2/(3, q − 1) will be contained
in Gω. But this implies, as in the proof of Lemma 4.6, that Gω has commuting elements x1, x2 with
centralizers containing a subgroup isomorphic to SL2(q) and so that G = ⟨CG(x1)

′, CG(x2)
′⟩. But then

Lemma 2.2 forces G = Gω, which is a contradiction.
Thus the only possibilities for r ∈ π(Gω) are divisors of (q2 + q + 1)/(3, q − 1). If x ∈ Gω has order r
dividing (q2+q+1)/(3, q−1), then CG(x) is cyclic of order q

2+q+1/(3, q+1), and |NG(⟨x⟩) : CG(x)| = 3.
As 3 divides p(q2−1), but not |Gω|, this implies that Gω = CG(x). Moreover (q−1, q3−1) = 3(q−1) and
so we see that CG(y) = CG(x) for all y ∈ CG(x)

#. Thus |fixΩ(y)| = |NG(⟨y⟩) : Gω| = |NG(Gω) : Gω| = 3.
This shows all assertions of the lemma. �

4.3. Point Stabilizers of odd order. The groups treated in the previous sections were those whose
Sylow 2-subgroups fell into conclusions (2) or (3) of Lemma 2.18. In what follows, we therefore work
under the following hypothesis:

Hypothesis 4.8. Suppose that (G,Ω) satisfies Hypothesis 2.4 and that G is a simple group of Lie type,
but none of the groups PSL2(q), Sz(q) or PSU3(q) where q is even, or PSL2(q), PSU3(q) or PSL3(q)
where q is odd. Moreover we suppose that Gω has odd order.

Lemma 4.9. If (G,Ω) satisfies Hypothesis 4.8, then G ̸∼=Sp4(3).

Proof. We first observe that 5 ⊢ 2 and thus Gω is a 3-group by Lemma 2.27. The centralizers of elements
of order 3 in G have order divisible by 27, so Lemmas 2.2 and 2.20 imply that |Gω| ≥ 27. Moreover
the Sylow 3-subgroups of G are isomorphic to a wreath product 3 ≀ 3, therefore we see that Gω contains
3-central elements whose centralizer order is divisible by 4. Together with Lemma 2.2 this contradicts
Hypothesis 4.8. �

Lemma 4.10. Suppose that (G,Ω) satisfies Hypothesis 4.8 and let α, β, γ ∈ Ω be pair-wise distinct and
such that 1 ̸= H := Gα ∩Gβ ∩Gγ . Then |NG(X) : NH(X)| ∈ {1, 3} for all 1 ̸= X ∈ H and there exists
a nontrivial subgroup X of H such that |NG(X) : NH(X)| = 3.

Proof. Hypothesis 4.8 implies that |Ω| ≥ 7. For all nontrivial subgroups X of H, we know by Lemma
2.2 that |NG(X) : NH(X)| ≤ 3. There exists some 1 ̸= X ≤ H such that NG(X) � H by Lemma 2.1,
and for this subgroup |NG(X) : NH(X)| ∈ {2, 3}. However, index 2 cannot occur because otherwise
some 2-element in NG(X) fixes one of α, β, γ, contrary to Hypothesis 4.8. �

We recall that, in a simple group G of Lie type of characteristic p, an element g is called semisimple if
and only if its order is coprime to p. A semisimple element is called regular semisimple if and only if
(|CG(g)|, p) = 1. We note that the centralizer of a nonregular semisimple element contains a subgroup
which is isomorphic to either SL2(q) or PSL2(q) and is generated by root elements of G. Recall that
SL2(q) is a perfect group when q ≥ 4, and hence does not contain subgroups of index less than or equal
to 4. Moreover SL2(3) ∼= Q8 : 3 and SL2(2) =PSL2(2) ∼= S3.
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Lemma 4.11. If (G,Ω) satisfies Hypothesis 4.8, then all non-identity elements in point stabilizers are
regular semisimple elements.

Proof. Let ω ∈ Ω and suppose that some non-identity element g ∈ Gω is not regular and semisimple.
Then either g is semisimple and CG(g) contains a subgroup isomorphic to SL2(q) or PSL2(q) and is
generated by root elements of G, or g is not semisimple.
If g ∈ Gω is not semisimple, then g powers to a p-element, so Hypothesis 4.8 implies that p is odd. If
p ̸= 3, then Lemma 2.15 yields that Gω contains a full Sylow p-subgroup of G. Thus Gω contains a long
root element r and also CG(r) which, under Hypothesis 4.8, is a perfect group containing a subgroup
isomorphic to SL2(q). Thus Gω has even order which is a contradiction to Hypothesis 4.8.
If p = 3 and Gω contains a 3-element, then Lemma 2.20 yields that Gω either contains an index 3
subgroup of a Sylow 3-subgroup of G, or the Sylow 3-subgroup of G is of maximal class. The latter
is excluded by Hypothesis 4.8, so we may assume that Gω contains an index 3 subgroup of a Sylow
3-subgroup P of G. The Chevalley commutator relations imply that any index 3 subgroup of P must
contain Z(P ) and thus Z(P ) ≤ Gω. If G ̸∼=2 G2(q), then it follows from Lemma 2.2 that an index
3 subgroup of CG(Z(P )) is contained in Gω. But |CG(Z(P ))|2 ≥ 8, so now |Gω| has even order,
contradicting Hypothesis 4.8. Finally if G ∼=2 G2(q), then NG(Z(P )) has structure P : (q − 1) which
implies that an element h of order (q− 1)/2 lies in Gω. Now |NG(⟨h⟩)|2 = 4 which by Lemma 2.2 forces
|Gω| to be even, again contradicting Hypothesis 4.8.
Thus we have shown that the elements of Gω are semisimple.
If q ≥ 4 and g is semisimple, but not regular, then CG(g) contains a subgroup isomorphic to SL2(q) or
PSL2(q) which is perfect. Hence Lemma 2.2 forces |Gω| to be even, which violates Hypothesis 4.8.
If q = 3 and g is semisimple, but not regular, then CG(g) contains a subgroup isomorphic to SL2(3). As
|SL2(3)|2 = 8, Lemma 2.2 implies that Gω has even order, contradicting Hypothesis 4.8.
If q = 2, and g is semisimple, but not regular, then CG(g) has a subgroup isomorphic to SL2(2). Since
this group has order 6, Lemma 2.2 shows that (|Gω|, 6) ̸= 1. So under Hypothesis 4.8 this means
that Gω contains a 3-element whose centralizer contains the centralizer R of a root subgroup SL2(2).
Hypothesis 4.8 implies that G is not of rank 2, because PSL3(2) ∼=PSL2(7), Sp4(2) ∼=PSL2(9) ∼= A6,
PSU4(2) ∼=PSp4(3), and G2(2)

′ ∼=PSU3(2). Therefore G has rank at least 3 and we see that |R|2 ≥ 4.
But this means that |Gω| is even, again contradicting Hypothesis 4.8. �
Having established that every element in a point stabilizer is regular, we now consider centralizers of
regular semisimple elements in groups satisfying Hypothesis 4.8. We note that such a centralizer is a
torus. Moreover the order of a torus is a polynomial in q of degree equal to the untwisted Lie rank of G.

Lemma 4.12. If q is a prime power, q > 3 and G =2 G2(q), then there is no set Ω such that (G,Ω)
satisfies Hypothesis 2.4.

Proof. Assume otherwise and let ω ∈ Ω. If g ∈ G#
ω , then |CG(g)| ∈ {q − 1, q +

√
3q + 1, q −

√
3q + 1}.

If |CG(g)| = q − 1, then |NG(⟨g⟩)|2 = 4 which implies that |Gω| is even, a contradiction to Hypothesis
4.8. If |CG(g)| = q+

√
3q+ 1 or q−

√
3q+ 1, then Lemma 2.2 implies that CG(g) ≤ Gω. Next we recall

that |NG(CG(g))/CG(g)| = 6, so Lemma 2.2 yields that 2 or 3 divides |Gω|. The former contradicts
Hypothesis 4.8 whereas the latter contradicts Lemma 4.11. �
Hypothesis 4.13. From now on until the end of this subsection we suppose that (G,Ω) satisfies Hypoth-
esis 4.8 and that G is of Lie rank at least 2, but not isomorphic to PSL3(2), G2(2),Sp4(2),PSU4(2) ∼=Sp4(3)
or PSL4(2) ∼= A8. Moreover all nonidentity elements of Gω are regular and semisimple.

We denote the natural module of G by N . By ϕd(x) we denote the irreducible cyclotomic polynomial
dividing xd − 1, but not xk − 1 for all k < d.

Lemma 4.14. Suppose that (G,Ω) satisfies Hypothesis 4.13 and let ω ∈ Ω. If g ∈ G#
ω , then the following

are true:
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(1) CG(g) is a maximal torus of G.
(2) If G is a classical group, then dim(N)− dim([N, gi]) ≤ 2 for all i < o(g). Moreover if ϕd(q) is

a divisor of |CG(g)|, then |NG(T )/T | is divisible by d.
(3) If G is a classical group, then (3, |Gω|) = 1.
(4) If G is an exceptional group and CG(g) is not a 3-group, then 4 divides |NG(CG(g))/CG(g)|.
(5) If G is an exceptional group, then for all 3-elements the centralizer has order divisible by 8.

Proof. The conclusion of Lemma 4.11 is that g is regular and semisimple. This implies that CG(g) is a
maximal torus; i.e. (1) follows.
Suppose now that G is classical and that CG(g) is not cyclic. Recall that N denotes the natural module
of G. If ϕd(q) is a divisor of |G|, then G possesses an element xd such that dim([N, xd]) ∈ {d, 2d} and
[N,xd] is nondegenerate with respect to the form defining G.
This is clear if G = SL(N) as there exists a d×d matrix with characteristic polynomial ϕd(x). For Sp(N)
and SU(N) we embed the element via the overfield groups SL2(q

d) : d, and if G is orthogonal, then we
use the overfield groups O±1

2 (qd) : d. The embeddings show that d is a divisor of NG(⟨xd⟩)/CG(xd). Next
we note that, if G is not orthogonal and dim(CN (xd)) ≥ 2, or if G is orthogonal and dim(CN (xd)) ≥ 3,
then |CG(xd)| is divisible by 4.
So if r > 3 is a prime divisor of (|CG(g)|, ϕd(q)), then Lemma 2.2 implies that Gω contains a Sylow
r-subgroup of G and thus a conjugate of a suitable power of the element xd above. In light of Lemma
2.2 we must have that |CG(xd)|2 ≤ 2 which implies that dim(N)− dim([N, xd]) = 0 if G is symplectic,
dim(N)−dim([N, xd]) ≤ 1 if G is linear or unitary, and dim(N)−dim([N, xd]) ≤ 2 if G is orthogonal. If
dim(N)−dim([N, gi]) > 2 for some proper power gi of g, then the element gi is not regular, contradicting
Hypothesis 4.13. Thus (2) is proved.
If r = 3 and Gω contains an element t of order 3, then Hypothesis 4.13 implies that t is semisimple,
and hence (3, q) = 1. Thus if q ≡ 1 mod 3, then t is contained in a maximal split torus T+ of G, and if
q ≡ −1 mod 3, then t is contained in a torus T− of order (q+1)dim(N)/2. If q ≡ 1 mod 3 and q− 1 > 3,
then Lemma 2.2 implies that T+ ∩Gω contains every element of order (q − 1)/3 of T+. If q ̸= 4, then,
since the rank of G is at least 2, some element of T+ of order (q − 1)/3 is not regular and contained
in Gω. This contradicts Hypothesis 4.13. Similarly if q ≡ −1 mod 3 and q + 1 > 3, then Lemma 2.2
implies that T+ ∩ Gω contains every element of order (q + 1)/3 of T+. If q ̸= 2, then, as the rank of
G is at least 2, some element of T+ of order (q + 1)/3 is not regular and contained in Gω. Again this
contradicts Hypothesis 4.13.
If q = 2, then either |T−| ≥ 27 and NG(T

−) has a subgroup isomorphic to S3 ≀ S[dim(N)/2] or G is

PSL5(2). In all cases |NG(⟨t⟩)|2 ≥ 4 for every element t ∈ T− and hence Lemma 2.2 implies that |Gω|
is even, which is a contradiction.
If q = 4, then either |T+| ≥ 27 or the rank of G is 2. In the former case Gω contains elements t with
|NG(⟨t⟩)|2 ≥ 4 (choose t in a suitable rank 2 subgroup of T+). So Lemma 2.2 forces that |Gω| is even,
again contradicting Hypothesis 4.13. The classical groups of rank 2 over the field of 4 elements are
PSL3(4), PSp4(4), PSU4(4) and PSU5(4). The group PSp4(4) is a subgroup of PSU4(4) =SU4(4) and
SU4(4) is isomorphic to a subgroup of PSU5(4). As |PSp4(4)|3 = |PSU4(4)|3 = |PSU5(4)|3 = 9 we see
that every 3-element of PSU4(4) and PSU5(4) fuses to a 3-element in PSp4(4).
If t is a 3-element in PSp4(4), then its centralizer in PSp4(4) has order divisible by 4.
If G =PSL3(4), then for every 3-element t ∈ G we have that |NG(⟨t⟩)| = 18.
Now we suppose that t ∈ Gω is of order 3. Then Lemma 2.2 implies that |Gω| is even (see previous
paragraph) or that Gω contains a Sylow 3-subgroup of G. The first case contradicts Hypothesis 4.13. If,
in the second case, T is a Sylow 3-subgroup of G with T ≤ Gω, then, as |NG(T )/T |2 = 4, Lemma 2.2
implies that |Gω| is even. This is again a contradiction. We conclude that 3 /∈ π(Gω) and hence (3) is
proved.
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Statement (4) can be deduced from Tables 5.1 and 5.2 of [17], whereas Statement (5) can be deduced
from the tables in [18]. �

Corollary 4.15. If (G,Ω) satisfies Hypothesis 4.13, then G is not an exceptional group.

Proof. Assume otherwise and let ω ∈ Ω. If g ∈ G#
ω , then Lemma 4.14 (1) says that T := CG(g) is a

maximal torus. Let r be an odd prime and let R be a Sylow r-subgroup of T . If r ̸= 3, then R ≤ Gω

by Lemma 2.15 (c) and thus |NG(R) : (Gω ∩ NG(R))| ≤ 3 by Lemma 2.2. It follows with Lemma
4.14 (4) that |NG(R)| is divisible by 4 and hence Gω has even order, contrary to Hypothesis 4.13. If
r = 3, then Gω contains a 3-element and so Lemma 4.14 (5) implies that |Gω| is even again. This is a
contradiction. �

Lemma 4.16. If (G,Ω) satisfies Hypothesis 4.13 and ω ∈ Ω, then one of the following is true:

(1) G =PSL3(q) with q even, Gω is cyclic of order (q2 + q + 1)/(3, q − 1) (in particular of order
coprime to 3) and |Ω| = (q − 1)2(q + 1)q3. Moreover |NG(Gω) : Gω| = 3.

(2) G =PSL4(3), Gω is cyclic of order 13, and |Ω| = 27 · 36 · 5.
(3) G =PSL4(5), Gω is cyclic of order 31, and |Ω| = 27 · 32 · 56 · 13.
(4) G =PSU4(3), Gω is cyclic of order 7, and |Ω| = 27 · 36 · 5.

Proof. By (1) of Lemma 4.14 CG(g) is a maximal torus for every 1 ̸= g ∈ Gω. Also Lemma 2.2 and (3)
of Lemma 4.14 imply that |CG(g)|3 ≤ 3. Let d := dim(N)/2.
If G is symplectic, then the proof of (2) of Lemma 4.14 showed that CN (g) = 0 for every g ∈ G#

ω . On
the other hand, using the fact that g is contained in a subgroup of G isomorphic to SL2(q

d) : d, we see
that |NG(⟨g⟩)/CG(g)| = 2d.
It follows from Hypothesis 4.13 that |NG(⟨g⟩) : Gω ∩NG(⟨g⟩)| is even, which implies that Gω contains
an element h of order d which induces a Galois automorphism of order d on ⟨g⟩. Now dim(CN (h)) = 2,
which means that h is not regular, contrary to Hypothesis 4.13. So G is not symplectic.
We observe that Lemma 4.10 yields that 3 must divide NG(⟨X⟩) for some X ≤ Gω. It follows with
Lemma 2.2 that X lies inside some three point stabilizer H.
Now if for all g ∈ H# and all h ∈ ⟨g⟩# we have that NG(⟨h⟩) ≤ H, then Lemma 2.1 implies that
G is a Frobenius group, contrary to our main hypothesis. Therefore we find some g ∈ H# such that
|NG(⟨g⟩) : NH(⟨g⟩)| = 3.
If G is linear or unitary, then the elements g ∈ G#

ω satisfy dim(N) − dim([N, gi]) ≤ 1. Thus the
order of every such g is a divisor of qdim(N) − 1 or (qdim(N)−1 − 1). Now using the fact that some
nontrivial subgroup of H has to have a normalizer whose order is divisible by 3 implies that either
dim(N) ≡ 0 mod 3 or dim(N)− 1 ≡ 0 mod 3. On the other hand Lemma 4.14 shows that if o(g) is a
divisor of qdim(N) +1, of qdim(N) − 1 or of (qdim(N)−1 ± 1), then |NG(⟨g⟩)/CG(g)| is divisible by dim(N)
or dim(N)− 1, respectively.
An element h ∈ NG(⟨g⟩) \ CG(g) whose order is one of dim(N) or dim(N) − 1 and is divisible by 3
has the property that dim(CN (h3)) ≥ 3. Therefore it does not lie in Gω by Hypothesis 4.13. Thus
|NG(⟨g⟩) : Gω ∩NG(⟨g⟩)| ≥ dim(N)− 1 which implies that dim(N) ≤ 4 and o(g) is a divisor of q3 + 1
or q3 − 1. Then also CG(g) ≤ Gω.
If dim(N) = 4 and G is linear, then |CG(g)| = (q3 − 1)/(4, q − 1). If q /∈ {3, 5}, then CG(g) contains
elements of order dividing (q−1) whose centralizer in G contains a subgroup isomorphic to SL3(q). But
then Lemma 2.2 implies that Gω contains such a subgroup, which is a contradiction. If q ∈ {3, 5}, then
CG(g) is cyclic of order (q3 − 1)/(4, q− 1) = q2 + q+1 and NG(⟨g⟩)/CG(g) is cyclic of order 3. Thus we
obtain examples (2) and (3) from the lemma.
If dim(N) = 3 and G is linear, then q is even, |CG(g)| = (q2 + q + 1)/(3, q − 1) and NG(⟨g⟩)/CG(g) is
cyclic of order 3.
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As 3 divides (q2− 1), but not |CG(g)|, this implies that Gω = CG(g). Moreover (q−1, q3− 1) = 3(q− 1)
and so we see that CG(y) = CG(g) for all y ∈ CG(g)

#.
Thus |FΩ(y)| = |NG(⟨y⟩) : Gω| = |NG(Gω) : Gω| = 3 as in (1).
If G is unitary, then dim(N) ≥ 4 and q > 2 by Hypothesis 4.13, and hence dim(N) = 4. In this case
|CG(g)| = (q3 + 1)/(4, q + 1). If q > 3, then CG(g) contains elements of order dividing (q + 1) whose
centralizer in G has a subgroup isomorphic to SU3(q). But then Lemma 2.2 implies that Gω contains
a subgroup isomorphic to SU3(q), which is a contradiction. Note that PSU4(2) ∼=PSp4(3) does not
give any examples by Lemma 4.9. Finally if G =PSU4(3), then |CG(g)| = (33 + 1)/(4, 3 + 1) = 7 and
|NG(⟨g⟩)/CG(g)| = 3, which yields example (4) in the conclusion of our lemma.
If G is orthogonal, then dim(N) ≥ 7 and dim([N, g]) is even. Therefore |NG(⟨g⟩)/CG(g)| ≥ 6, which
implies that Gω = CG(g). This means that Gω contains an involution, contradicting our hypothesis that
|Gω| is odd. �
4.4. Summary.

Theorem 4.17. Suppose that G is simple and of Lie type and that G is not isomorphic to an Alternating
Group. Suppose further that (G,Ω) satisfies Hypothesis 2.4. Then one of the following is true:

(1) G =PSL3(q), Gω is cyclic of order (q2 + q + 1)/(3, q − 1), and |Ω| = (q − 1)2(q + 1)q3.
(2) G =PSL4(3), Gω is cyclic of order 13, and |Ω| = 27 · 36 · 5.
(3) G =PSL4(5), Gω is cyclic of order 31, and |Ω| = 27 · 32 · 56 · 13.
(4) G =PSU3(q) with q ≥ 3, Gω is cyclic of order (q2−q+1)/(3, q+1) and |Ω| = (q−1)(q+1)3q3.
(5) G =PSU4(3), Gω is cyclic of order 7, and |Ω| = 27 · 36 · 5.
(6) G =PSL2(7) ∼=PSL3(2) with |Ω| = 7 and Gω

∼= S4.
(7) G =PSL2(11) with |Ω| = 11 and Gω

∼= A5.

We note that in (1) and (4) the point stabilizers have order coprime to 6.

Proof. The groups with strongly 2-embedded subgroups were considered in Lemmas 4.2, 4.3 and 4.4.
The only examples arising here are the groups PSU3(q) where q is even, as described in (4).
The groups with dihedral or semidihedral Sylow 2-subgroups were considered in Lemmas 4.5, 4.6 and
4.7. The examples arising here are the groups PSU3(q) with q odd, which are accounted for in (4), the
groups PSL3(q) with q odd, which appear in (1), and the groups PSL2(7) and PSL2(11) which are listed
in (6) and (7).
The groups for which the normalizer of a Sylow 2-subgroup is not strongly embedded and where the
Sylow 2-subgroups are neither semidihedral nor dihedral satisfy Hypothesis 4.8. In fact all but PSp4(3)
and 2G2(q) satisfy Hypothesis 4.13. Lemma 4.9 shows that the group PSp4(3) does not give any example
and Lemma 4.12 shows the same for the groups 2G2(q).
The exceptional groups of Lie type which satisfy Hypothesis 4.13 do not lead to examples, as we have
seen in Corollary 4.15. The classical groups of Lie type which satisfy Hypothesis 4.13 are treated in
Lemma 4.16 and here the examples involving PSL3(q) with q even, PSL4(3), PSL4(5), PSU4(3) arise.
These are accounted for in (1), (2), (3) and (5), respectively. �
For convenience we remind the reader that PSL2(7) ∼=PSL3(2) gives rise to two examples which are
listed in (1) and (6) above.
Before analyzing the almost simple groups with socle PSL3(q) and PSU3(q) (which play a role for
Theorems 1.2 and 1.3), we need a preparatory lemma.

Lemma 4.18. Suppose that p is a prime and let a ∈ N and q := pa > 4, and let E :=PSL3(q). Then
|Out(E)| = 2a · (q − 1, 3).
Now suppose that G is a group such that E < G ≤Aut(E) and that (G,Ω) satisfies Hypothesis 2.4. Let
ω ∈ Ω and suppose that Eω is cyclic of order q2 + q + 1/(q − 1, 3). Then the following are true:

(1) NG(Eω)/NE(Eω) ∼= G/E.
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(2) If q > 4, then (q − 1, 3) = 3, G/E is cyclic of order 3, and no element of G \E induces a field
automorphism on E.

Proof. The order of the outer automorphism group of E is well known and is as claimed. The outer
automorphisms are diagonal, field or graph automorphisms and their products. All of this can be found
in Theorem 2.5.12 of [11].
Now (1) follows from a Frattini argument, using the fact that G acts transitively on the set of point
stabilizers in E.

We know from Lemmas 4.7 and 4.16 that |NE(Eω)| = 3 · |Eω| and that (|Eω|, 3) = 1. Thus (1) implies
that |Gω : Eω| = |G/E|.
To prove (2) we suppose to the contrary that 1 ̸= |NG(Eω)/NE(Eω)| =: b. Then Lemma 2.2 implies that
Gω contains a subgroup of order b. Now if (b, 3) = 1, then all elements h ∈ NG(Eω) \NE(Eω) of prime
order dividing b are either graph, field or graph-field automorphisms. Thus, as q > 4, it follows that
CE(h)

′ ∼= PSO3(q), PSL3(q0) or PSU3(q0), where q0 divides q. As no proper subgroup of E contains
both Eω and CE(h)

′, we see that NG(Eω)/Eω is a 3-group.
Next we note that if (3, q − 1) = 1, then PGL3(q) ∼=PSL3(q) = E and hence every element t of order 3
in G \E is a field automorphism such that CE(t)

′ ∼=PSL3(q0). Now (1) forces a conjugate of t into Gω.
However, as no proper subgroup of E can contain Eω and CE(t)

′ we see that 3 = (q − 1, 3).
Thus NG(Eω)/Eω is a 3-group and (3, q − 1) = 3 and, with l denoting the highest power of 3 dividing
a (from our hypothesis), we see that G/E is a 3-group of order at most 3 · l.
If G/E contains field automorphisms of order 3, then (1) implies that Gω contains a field automorphism
t of order 3 such that CE(t) ∼=PSL3(q0). As before Lemma 2.2 forces E ≤ Gω, which is impossible. The
fact that no element of G \ E is allowed to induce a field automorphism of E implies that |G/E| = 3,
which is our claim. �

Lemma 4.19. Suppose that G is almost simple and not simple and that E = F ∗(G) ∼=PSL3(q). If (G,Ω)
satisfies Hypothesis 2.4, then (3, q − 1) = 3, G =PGL3(q) and Gω is cyclic of order (q3 − 1)/(q − 1).

Proof. If F ∗(G) =PSL3(q) with q ≤ 4, then the table of marks for the almost simple groups of this type
are in [23]. Inspection of these tables yields exactly our claimed example; i.e. PGL3(4) acting on the
cosets of a cyclic group of order 21.
So without loss we may assume that q > 4. Let ω ∈ Ω. First we note that Eω is cyclic of order
(q2 + q + 1)/(3, q − 1) by Theorem 4.17 (1). Moreover by Lemma 4.18 we know that 3 = (q − 1, 3) and
either G ∼=PGL3(q) or q = q30 and G ∼=PGL∗

3(q) = ⟨E, d⟩ where d induces a diagonal-field automorphism
on E.
In the latter case we see, by direct computation, that any g ∈PGL∗

3(q)\E has order divisible by 9. Thus
if g ∈ Gω \Eω, then g has order 9 which implies that 3 divides |Eω|, contradicting Theorem 4.17. Hence
G ∼=PGL3(q). We note that Gω ≤ NG(Eω), but that Gω � E by Lemma 4.18 (1).

We also note that a Singer cycle in GL3(q) has order (q3 − 1) and maps via the natural projection to
a cyclic subgroup C of order (q3 − 1)/(q − 1) = q2 + q + 1 of PGL3(q). It follows from the subgroup
structure of PGL3(q) that C ∩ E is conjugate to Eω. (They have the same order and are both cyclic.)
So we may suppose that Eω ≤ C ≤ NG(Eω) = ⟨C, t⟩ where t ∈ NE(Eω) is an element of order 3. We
note that NG(Eω)/Eω is elementary abelian of order 9 and now we let d ∈ C be of order 3 and such
that ⟨d, t⟩ is a Sylow 3-subgroup of NG(Eω). In particular C = ⟨Eω, d⟩.

There are four possibilities for Gω (≤ NG(Eω)) because ⟨d, t⟩ has four subgroups of order 3.
The first possibility is that Gω = ⟨Eω, t⟩. But this is impossible because t ∈ E and Gω � E. Now we
assume that Gω ∈ {⟨Eω, dt⟩, ⟨Eω, d

−1t⟩}.
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Let h ∈ {dt, d−1t} (depending on Gω) and choose g ∈ K :=GL3(q) to be a 3-element that projects onto
h. Then |CK(g)| ≥ (q − 1)2, which implies that |CG(h)| ≥ (q − 1) > 3 (because q > 4). Now h ∈ G \ E
and so NG(⟨h⟩) = CG(h). Hence |NG(⟨h⟩)| = |CG(⟨h⟩)| = 3|CG(h)| ≥ 3(q − 1) > 9 and Lemma 2.2
implies that NG(⟨h⟩) ≤ NG(C). It follows that CG(h) = CH(h). On the other hand |CC(h)| = 3 because
t acts fixed point freely on Eω. Therefore 9 = |CH(h)| < |CG(h)|, which is a contradiction.
Now there is only one possibility left, namely that Gω = ⟨Eω, d⟩ = C.

Finally we observe that the possibility Gω = C leads to an example. To see this it suffices to observe
that NG(⟨c⟩) ≤ NG(C) for all 1 ̸= c ∈ C \ Eω. The latter is clear as CG(c) ≤ CG(d) = C. �
Lemma 4.20. Suppose that q is a prime power, q ̸= 2, and that G is almost simple, but not simple,
with F ∗(G) ∼=PSU3(q). If (G,Ω) satisfies Hypothesis 2.4, then (3, q + 1) = 3, G =PGU3(q) and Gω is
cyclic of order (q3 + 1)/(q + 1).

Proof. Theorem 4.17 in combination with Theorem 1.2 of [19] implies that the only possible action
for F ∗(G) is the action on the set of cosets of a cyclic group C of order (q2 − q + 1)/(3, q + 1). By
observing that GU3(q) lies naturally in GL3(q

2) such that the group C lies naturally in the cyclic group
Eω ≤PSL3(q

2) of order (q4 + q2 +1)/(3, q2 − 1) from Lemma 4.19 above, we may use the computations
from Lemma 4.18 and Lemma 4.19 to establish our claim. We omit the details. �
Lemma 4.21. Suppose that (G,Ω) satisfies Hypothesis 2.4 and that G is almost simple such that F ∗(G)
is one of PSL4(3), PSL4(5) or PSU4(3). Then G is simple.

Proof. Let ω ∈ Ω and suppose that F ∗(G) is one of PSL4(3), PSL4(5) or PSU4(3). Then P := Gω∩F ∗(G)
is a Sylow 13-, 7- or 31-subgroup of G, respectively. Now we note that P < NF∗(G)(P ) by Theorem 4.17,
but also G = F ∗(G)·NG(P ) by Frattini. Hence Lemma 2.2 forces an involution t ∈ NG(P ) into Gω. Then
the structure of CF∗(G)(t) and Lemma 2.2 imply that F ∗(G) ∩Gω ̸= P , which is a contradiction. �

5. The sporadic simple groups

In this section we adapt the notation in the ATLAS ([5]) for the names of the sporadic groups.

Lemma 5.1. Suppose that G is M11 or M12 and that (G,Ω) satisfies Hypothesis 2.4. Then G = M11

in its 4-fold sharply transitive action on 11 points.

Proof. Let α ∈ Ω and H := Gα. Let x ∈ H and X := ⟨x⟩. For maximal subgroups of G and information
about local subgroups we refer to Tables 5.3a and 5.3b in [11].
First assume that x has order 11. Then NG(X) has order 11 · 5 and therefore Lemma 2.2 yields that H
contains a subgroup Y of order 5. In both cases, |NG(Y )| is divisible by 4 and hence H has even order,
again by Lemma 2.2. Then let t ∈ H be an involution. Lemma 2.2 implies that H contains a subgroup
of index at most 3 of CG(t). As |H| is also divisible by 11 and by 5, the lists of maximal subgroups yield
that H = G. This is impossible.
If x has order 5, then NG(X) has order divisible by 4 and hence H contains a subgroup of index at most
3 of an involution centralizer (applying Lemma 2.2 twice). This is possible if G = M11 and Ω has 11
elements, and we already know that this is in fact an example for Hypothesis 2.4. In M12, we see that
H lies in the centralizer of an involution from class 2A and hence H contains a 3-element. Lemma 2.2
implies that 9 divides |H|, but this is false.
So from now on we consider the case where H is a {2, 3}-group.
Let us assume that x is an involution and that |fixΩ(x)| ∈ {1, 3}. Then all involutions have an odd
number of fixed points and hence Lemma 2.15 (or 2.2 (a)) yields that H has odd index. In M12 we
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immediately have 3 ∈ π(H) via CG(x) and Lemma 2.2. In M11 we look at a fours group in H and apply
Lemma 2.2 to it in order to see that 3 ∈ π(H). Let Y ≤ H be a subgroup of order 3.
If G = M11, looking at the list of maximal subgroups, we see that H does not contain a Sylow 3-
subgroup of G in this case. So we may suppose that |fixΩ(Y )| = 3 by Lemma 2.2 (a) and (b). It follows
that H = CG(x). Let a ∈ H be an element of order 8. As |Ω| = 165, we see that x has either one fixed
point, one orbit of length 4 and regular orbits or three fixed points, one orbit of length 2 and regular
orbits on Ω. In both cases a4 is an involution that has too many fixed points.
If G is M12, then H contains a full involution centralizer. This implies that 5 ∈ π(H), which is a
contradiction. Suppose that o(x) = 3. Then NG(X) has order divisible by 4 and hence Lemma 2.2 yields
that H has even order. Let t ∈ H be an involution. We already treated the case where some involution
in H has one or three fixed points, so |fixΩ(t)| = 2 and in particular |Ω| is even. Lemma 2.2 (b) yields
that H contains an index two subgroup of an involution centralizer, which in the case M12 implies
that H contains involutions from all conjugacy classes (see Lemma 2.18). In particular H contains a
Sylow 2-subgroup of G, contrary to the fact that |Ω| is even. If G = M11, then H contains subgroups of
structure SL2(3) and S3 × 2, which is also impossible.
This finishes the proof. �
The remaining sporadic groups do not have dihedral or semidihedral Sylow 2-subgroups. This makes
Lemma 2.18 very useful again.

Lemma 5.2. Suppose that Hypothesis 2.4 holds and that G is a sporadic group, but not M11. Let α ∈ Ω.
Then Gα contains a Sylow 2-subgroup of G or it has odd order. In the second case there exists no prime
p ∈ Gα such that p ⊢ 2.

Proof. This is a combination of Lemmas 2.18 and 2.27. �
Lemma 5.3. Suppose that G is M22, M23 or M24 and that Ω is a set such that (G,Ω) satisfies Hypothesis
2.4. Then G = M22 and the action of G on Ω is as the action of G on the set of cosets of a subgroup of
order 7.

Proof. Let α ∈ Ω, let x ∈ H := Gα and X := ⟨x⟩. We may suppose that x has prime order p. For
maximal subgroups of G and information about local subgroups we refer to Tables 5.3c-e in [11].
We first suppose that H has odd order, in particular p is odd and p ̸⊢ 2 by Lemma 5.2. In all groups
considered here, 11 ⊢ 5 and 5 ⊢ 2, so p is neither 11 nor 5. Moreover 23 ⊢ 11 and hence p ̸= 23. If p = 7,
then this either leads to M22 and the example that is stated in the lemma, or, in the larger groups,
we have that 7 ⊢ 3. But also 3 ⊢ 2, so this leads to a contradiction. Lemma 5.2 leaves the case where
H contains a Sylow 2-subgroup of G. Looking at centralizers of involutions (and in M22, also at the
normalizer of an elementary abelian subgroup of order 8), we see that 3 ∈ π(H) by Lemma 2.2.
If G = M22, then H lies in a maximal subgroup of structure 24 : A6 or 24 : S5, so by Lemma 2.2 it is
equal to one of these groups. But this does not agree with Lemma 2.2.
If G is M23 or M24, then H contains a full involution centralizer. In M23 this means that H is a maximal
subgroup of structure 24 : A7. Then by congruence modulo 3, all 3-elements must have a unique fixed
point and Lemma 2.2 forces H to contain a subgroup of structure (3×A5) · 2. This is a contradiction.
In M24 we see that H contains a Sylow 2-subgroup of G, hence |Ω| is odd. It is also coprime to 5 and
7, and in the only remaining possible case it follows that elements of order 5 in H have too many fixed
points. �
Lemma 5.4. Suppose that G is a Janko Group. Then there is no set Ω such that (G,Ω) satisfies
Hypothesis 2.4.

Proof. Assume that Ω is such a set, let α ∈ Ω and H := Gα. For information about local subgroups of
G we refer to Tables 5.3f-i in [11] whereas we use the lists of maximal subgroups of G from Tables 5.4
and 5.11 in [25].
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First suppose that H has odd order and let x ∈ H be of prime order p. We note that 3 ⊢ 2 and 5 ⊢ 2,
so p ≥ 7 by Lemma 5.2. Then the tables yield that also p /∈ {7, 19}. Moreover 11 ⊢ 5, 17 ⊢ 2, 23 ⊢ 11,
29 ⊢ 7 and 43 ⊢ 7. The only remaining primes are 31 and 37, but they are also impossible because 31 ⊢ 5
and 37 ⊢ 2. Hence this case does not occur at all.
With Lemma 5.2 we know that H contains involutions from all conjugacy classes. In particular 3, 5 ∈
π(H) whence, by Lemma 2.15, we see a Sylow 5-subgroup of G in H.
If G = J1, then Lemma 2.2 yields that H contains a subgroup of shape 3×D10 or S3×5 and a subgroup
isomorphic to A5. There is no maximal subgroup that could contain H now.
If G = J2, then H is contained in a maximal subgroup of structure A5 ×D10 or 52 : D12 (by its index
in G). Both cases are impossible because 9 divides |H| by Lemma 2.2.
If G = J3, then there is only one type of maximal subgroup that contains a Sylow 5-subgroup and a
subgroup of order 33, and it has structure (3×A6) : 2. But its order is only divisible by 24 and not by
26, so it cannot contain H. In the last case G = J4, we see that the centralizer of an involution involves
the group M22. Hence Lemma 2.2 yields that |H| is divisible not only by 2, 3 and 5, but also by 7 and
11, hence by 113 (using Lemma 2.15 (c)). There are only two types of maximal subgroups that have
order divisible by 113, and in both cases their order is not divisible by 7. This is a contradiction. �
Lemma 5.5. Suppose that G is a Conway Group. Then there is no set Ω such that (G,Ω) satisfies
Hypothesis 2.4.

Proof. Assume otherwise, let Ω denote such a set, let α ∈ Ω and H := Gα. For information about
local subgroups of G we refer to Tables 5.3j-l in [11] and for lists of maximal subgroups of G and their
indices we use [5]. The tables yield that for all prime divisors p of G, we have that p → 2. Hence it is
impossible that H has odd order, by Lemma 2.27. Lemma 5.2 implies that H contains involutions from
all conjugacy classes. This yields that 3, 5 ∈ π(H). In particular H contains a full Sylow 5-subgroup
of G by Lemma 2.15 (c). Inspection of the lists of maximal subgroups of G shows that all maximal
subgroups have index divisible by 5 or by 2, which is a contradiction. �
The proof of the previous lemma indicates a general approach for most of the remaining sporadic groups.

Theorem 5.6. Suppose that G is one of the following sporadic simple groups:
HS,McL, Suz,He, Ly,Ru,O′N,Fi22, F i23, F

′
24,HN, Th,BM .

Then there is no set Ω such that (G,Ω) satisfies Hypothesis 2.4.

Proof. Assume otherwise and let Ω be such that (G,Ω) satisfies Hypothesis 2.4. Let α ∈ Ω and H := Gα.
For information about local subgroups of G we refer to Tables 5.3m-y in [11] and for lists of maximal
subgroups of G and their indices we use [5] unless stated otherwise.

(1) 2, 3, 5 ∈ π(H).

Proof. In all groups we see that for all odd p ∈ π(G), we have that p → 2 and hence H has
even order. It contains involutions from all conjugacy classes by Lemma 5.2 and so we see that
also 3, 5 ∈ π(H) by Lemma 2.2. �

(2) H is contained in a maximal subgroup of index that is odd and coprime to 5.

Proof. We know from (1) and from Lemma 2.15 (c) that H contains a Sylow 5-subgroup of G.
Moreover H contains a Sylow 2-subgroup of G by (1) and Lemma 5.2. The same holds for a
maximal subgroup containing H and hence the statement about the index follows. �

We inspect the lists of maximal subgroups of the groups and in particular their indices. In most cases,
this already contradicts (2). For lists of maximal subgroups of the Fischer sporadic simple groups we
refer to Table 5.5 in [25] (particularly because there is a mistake in the list of subgroups of Fi23 in [5]).
For BM, we refer to Table 5.7 in [25].
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For Th, there is one maximal subgroup missing in the ATLAS, namely PSL3(3) (see Table 5.8 in [25]).
Its index is divisible by 211 and by 53, so this possibility contradicts (2). For Fi′24, we also note that the
maximal subgroups of structure PSU3(3) : 2 and PGL2(13) cannot contain H because of (2).
However, there are a few exceptions.
If G = O′N , then H could be contained in a maximal subgroup of structure 4˙PSL3(4) : 2. Then H
contains subgroups of order 5 and 7, so by Lemma 2.15 (c) it follows that H contains a Sylow 7-subgroup
of G. This has order 73, which is impossible.
If G =Fi23, then H could be contained in an involution centralizer of structure 2Fi22. In particular H
contains a subgroup of order 39 and hence a 3-central element of G. Lemma 2.2 implies that 312 divides
|H|, but this is false. �

Lemma 5.7. There is no set Ω such that (M,Ω) satisfies Hypothesis 2.4.

Proof. Assume otherwise and let G denote the Monster sporadic group M . Let Ω be such that (G,Ω)
satisfies Hypothesis 2.4, let α ∈ Ω and let H := Gα. We refer to Table 5.3z in [11] for information about
local subgroups and to Table 5.6 in [25] for the list of known maximal subgroups of G.
First we show that H has even order. This follows easily because, if p is any odd prime divisor of G, then
inspection of the tables shows that p → 2. Then we use Lemma 2.27. It follows from Lemma 5.2 that
H contains involutions from both conjugacy classes, so looking at the involution centralizers in Table
5.3z in [11], Lemma 2.2 tells us that H contains a subgroup isomorphic to BM and to Co1. Checking
the list of known maximal subgroups of G, we already see that this does not occur.
On page 258 in [25] it is noted (quoting work of Holmes and Wilson) that if U is any other maximal
subgroup of G, then there exists a group E isomorphic to one of PSL2(13), PSU3(4), PSU3(8), Sz(8),
PSL2(8), PSL2(16) or PSL2(27) such that E ≤ U ≤Aut(E). Checking the possibilities for U with these
constraints, we see that U does not have a subgroup isomorphic to BM or to Co1 and therefore H
cannot be contained in a maximal subgroup U of G of this kind. �

All results of this section together yield the following:

Theorem 5.8. Suppose that G is a sporadic simple group and that Ω is such that (G,Ω) satisfies
Hypothesis 2.4. Then G = M11 and |Ω| = 11 or G = M22 and |Ω| = 27 · 32 · 5 · 11.

6. Proofs of the main results

Lemma 6.1. Suppose that N is an elementary abelian normal subgroup of G and that H is a t.i.
subgroup of G of order coprime to 6. Suppose further that |NG(X) : NH(X)| = 3 for all subgroups
1 ̸= X ≤ H and that |CN (H)| = 3. Then H has a normal complement K in G.

Proof. Our hypotheses imply that N is a 3-group. As 3 /∈ π(H), it follows that H acts coprimely on
N and therefore N = CN (H) × [N,H]. Moreover |NG(H) : H| = 3, again by hypothesis. Now CN (H)
has order 3 and it is not contained in H, so we have that NG(H) = CN (H)×H. Moreover [N,H] is an
H-invariant subgroup of N , in particular [N,H]H is a subgroup of NH. Let h ∈ H# and let x ∈ [N,H]
be such that xh = x. Then h ∈ H ∩ Hx, so H = Hx because H is a t.i. subgroup. This means that
[H,x] ≤ H ∩N = 1 and therefore x ∈ CN (H) ∩ [N,H]. This forces x = 1 and we deduce that [N,H]H
is a Frobenius group with complement H. As |H| is odd, the Sylow subgroups of H are cyclic and in
particular H is metacyclic (see 8.18 in [12]). Also we see that Z(NH) = CN (H).
Let n ∈ N and let p1, .., pn be pair-wise distinct prime numbers such that π(H) = {p1, ..., pn} and
p1 < · · · < pn. Let P1 ∈Sylp1(H). We recall that H is a {2, 3}′-group, so we know that p1 ≥ 5 and hence
P1 ∈ Sylp1(G) by Lemma 2.15 (c).
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As P1 is cyclic and p1 is the smallest element in π(H) we see that |Aut(P )|p′
1
= p1 − 1 is strictly

smaller than the numbers p2, ..., pn. This means that NH(P1) = P1. Moreover |NG(P1) : NH(P1)| = 3
by hypothesis and it follows that NG(P1) = CN (H)×NH(P1) = CN (H)×P1. Burnside’s p-complement
theorem implies that P1 has a normal p1-complementM1 in G. We recall that p1 ≥ 5 and hence N ≤ M1.
Moreover H1 := H ∩M1 is characteristic in H and so NG(H1) = CN (H)×H.
We show that M1,H1 and N satisfy the hypotheses of the lemma instead of G,H and N . Of course N
is an elementary abelian normal subgroup of M1 and H1 is a {2, 3}′-group. Let g ∈ M1 be such that
H1 ∩Hg

1 ̸= 1. Then 1 ̸= H ∩M1 ∩Hg, in particular H ∩Hg ̸= 1. This forces H = Hg because H is a
t.i. subgroup by hypothesis. Therefore H1 ∩ Hg

1 = H ∩ M1 ∩ Hg = H ∩ M1 = H1, which means that
H1 is a t.i. subgroup of M1. If 1 ̸= Y ≤ H1, then NG(Y ) = NH(Y )× CN (H) by hypothesis and hence
NM1(Y ) = NH1(Y )× CN (H). In particular |NM1(Y ) : NH1(Y )| = 3.
We continue in this way: p2 ≥ 7 and hence H1 contains a Sylow p2-subgroup P2 of G, hence of M1

(by Lemma 2.15 (c)). Arguing for M1, H1 and P2 as for G, H and P1 before, we find a normal p2-
complement M2 in M1. Then M2 is characteristic in G, in fact M2 = O{p1,p2}′(G) and M2 contains N ,
so we may repeat these arguments until we reach the largest prime divisor of |H|. This way we find a
normal complement for H in G, namely Oπ(H)′(G). �

In light of the results of the previous sections, the proofs of Theorem 1.1 and 1.2 are basically an
application of the Classification of Finite Simple Groups (CFSG). The main point of this section is to
prove Theorem 1.3, which requires a bit more work.

Proof of Theorem 1.1. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4 and such that G is simple.
Then we apply the CFSG and Theorems 3.14, 4.17 and 5.8. This gives exactly the possibilities that are
listed in Theorem 1.1. �
Proof of Theorem 1.2. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4 and suppose that G is
almost simple, but not simple. Then Lemma 2.23 implies that either F ∗(G) ∼=PSL2(2

p) with p a prime,
which is conclusion (1), or (F ∗(G),Ω) satisfies Hypothesis 2.4. If F ∗(G) is an Alternating Group, then
Theorem 3.14 yields that S5 acting on 5 points is the only example. But in light of the isomorphism
S5

∼=Aut(PSL2(4)) we see that this example is a special case of conclusion (1). If F ∗(G) is of Lie type,
then Lemmas 4.19, 4.20 and 4.21 show that (2) and (3) are the only possible examples.
Finally if F ∗(G) is sporadic, then F ∗(G) is isomorphic to M11 or to M22. Our hypothesis that G is
not simple implies that only the latter case can occur and in fact G ∼=Aut(M22). Let ω ∈ Ω. Then Gω

contains a Sylow 7-subgroup S of G and NF∗(G)(S) ∩ Gω = S. Now |NG(S)/NF∗(G)(S)| = 2 and thus
Lemma 2.2 forces an involution t into Gω. However |CF∗(G)(t)| = 1344 and then Lemma 2.2 gives that
NF∗(G)(S) ∩Gω ̸= S, which is a contradiction. �

We already proved in Section 2 that, if (G,Ω) satisfies Hypothesis 2.4, then 3 ∈ π(G). For the additional
details in our main results, we split our analysis in two parts.

Proposition 6.2. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4 and let ω ∈ Ω. If |Gω| is
even, then one of the following is true:

(1) G has a normal 2-complement.
(2) G has dihedral or semidihedral Sylow 2-subgroups and 4 does not divide |Gω|. In particular Gω

has a normal 2-complement.
(3) Gω contains a Sylow 2-subgroup S of G and G has a strongly embedded subgroup.
(4) |G : Gω| is even, but not divisible by 4 and G has a subgroup of index 2 that has a strongly

embedded subgroup.

Proof. By hypothesis one of the cases (2), (3) or (4) from Lemma 2.17 holds. Case (2) leads to possibility
(2) of our proposition. In Case (4) we apply Lemma 2.19, where one of the possibilities (2), (3) or (4)
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holds. They lead to the cases (3), (1) and (4) of our proposition. Finally we suppose that Lemma 2.17 (3)
holds. Then either S is cyclic, which leads to (1), or some elements of S# act as odd permutations on
Ω and hence G has a subgroup G0 of index 2. Let S0 := G0 ∩ S. Then S0 fixes exactly two points α, ω
on Ω. Let M denote the set-wise stabilizer of {α, ω} in G0.
Let g ∈ G0 and let x ∈ M ∩Mg be a nontrivial 2-element, without loss x ∈ S0. Then x fixes α and ω
and it is contained in a Sylow 2-subgroup of Mg, so we may suppose that it fixes αg and ωg. Lemma
2.15 (a) implies that x does not have three fixed points, so {α, ω} = {αg, ωg} and therefore g ∈ M . This
shows that M is a strongly embedded subgroup of G0 as stated in (4). �

We say that G is a (0, 3)-group on Ω (as in [20]) if and only if G acts as a transitive permutation group
on Ω and all elements in G# fix either 0 or 3 points.

Proposition 6.3. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4 and let ω ∈ Ω. Suppose that
|Gω| is odd. If |fixΩ(Gω)| = 3, then one of the following is true:

(1) G has a normal subgroup R of order 27 or 9, and G/R is isomorphic to S3, A4, S4, to a fours
group or to a dihedral group of order 8.

(2) G has a regular normal subgroup.
(3) G has a normal subgroup F of index 3 which acts as a Frobenius group on its three orbits.
(4) G has a normal subgroup N which acts semiregularly on Ω such that G/N is almost simple and

Gω is cyclic.

Proof. If Gω is not t.i., then the main theorem of [21] implies that G has a regular normal subgroup of
order 27 or 9. The structure of G/R as described in (1) is given in the corollary to the main theorem of
[21].
On the other hand if Gω is t.i. and 3 ∈ π(Gω), then Proposition 6.5 of [20] implies that G has a normal
subgroup N of index 3. If the action of N on Ω is transitive, then by induction over the order of an
example we can see that N contains a regular normal subgroup N0, or a normal index 3 Frobenius group
F0. In the first case a Frattini argument implies that G = N0Gω = GωN0 and thus N0 is normal in G,
proving that G possesses a regular normal subgroup. In the second case the Frobenius kernel K0 of F0

is a characteristic subgroup of F0, and is hence also normal in G. The number of F0-orbits on Ω is equal
to 3, thus the orbit stabilizer G0 in G of one of the F0-orbits acts as a Frobenius group on its fixed
orbit, and hence on all F0 orbits. Thsi means that G0 is a Frobenius group of index 3 in G. As G/F0

has order 9, every index three subgroup of G/F0 is normal. Thus G0 EG, which is one of our possible
conclusions.
Finally we consider the case where Gω is still a t.i. subgroup and moreover |Gω| is coprime to 6. If G is
solvable, then Proposition 3.1 of [20] shows that either (2) or (3) holds. Thus we may assume that G is
not solvable.
Suppose that r is a prime and that N is a minimal normal subgroup of G which is an elementary abelian
r-group. If r /∈ {2, 3}, then N ∩Gω = 1 by Lemma 2.15. Otherwise N ∩Gω = 1 because |Gω| is coprime
to 6. In both cases N acts semiregularly on Ω. If r ̸= 3, then Lemma 1.9 in [20] implies that Gω has at
most one fixed point on ωN . If r = 3, then N is an elementary abelian 3-group and thus so is CN (Gω).
As |CN (Gω)| is the number of fixed points of N on ωN , we see that either fixΩ(Gω) ∩ ωN = {ω} (as
desired) or that |fixΩ(Gω) ∩ ωN | = 3 and thus |CN (Gω)| = 3.
If |CN (Gω)| = 3, then Lemma 6.1 implies that Gω has a normal complement K in G. As |K||GΩ| =
|G| = |Ω||Gω|, we obtain that K ∩ Gω = 1 and thus that K is a regular normal subgroup. This is one
of our conclusions.
So if H does not possess a normal complement in G, then every abelian minimal normal subgroup N
of G acts semiregularly on Ω and fixΩ(Gω) intersects an N -orbit in at most one point. If r ̸= 3 and

conclusion (3) does not hold, then Lemma 1.9 of [20] asserts that the action of G/N on Ω̃, the set of
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N -orbits on Ω, is faithful. Let ω̃ denote the element of Ω̃ containing ω. Then Gω̃
∼= Gω and every x ∈ Gω̃

fixes either three or no points of Ω̃. So (G/N, Ω̃) satisfies Hypothesis 2.4 and it is a (0, 3)-group.
If r = 3, then we saw that CN (x) = 1 for all x ∈ G#

ω . Thus x fixes exactly 3 orbits of N . On each of

these the action of NGω is Frobenius. If |Ω̃| = 3, then NGω is an index three Frobenius subgroup of G

and G acts on Ω̃ as a cyclic group or as S3. The latter case cannot happen because Gω has odd order.
So NGω is the kernel of the action of G on Ω̃ and hence it is normal in G. So if |Ω̃| = 3, then conclusion

(3) holds. Thus we may assume that |Ω̃| > 3. The kernel of the action of G on Ω̃ lies in the stabilizer of
ωN which is NGω. As NGω is a Frobenius group with complement Gω the kernel of the action must lie
inside N , which implies that G/N acts faithfully on Ω̃. Also Gω̃

∼= Gω and every x ∈ G/N fixes either

three or no points of Ω̃.
Thus if conclusion (3) does not hold, then (G/N, Ω̃) satisfies Hypothesis 2.4 and G/N acts as a (0, 3)-
group. If neither (2) nor (3) holds for G and if N has an abelian minimal normal subgroup, then by

induction on |G| we may conclude that (4) holds for (G/N, Ω̃). In turn this implies that conclusion
(4) holds for G. On the other hand if neither (2) nor (3) holds for G and N does not have an abelian
minimal normal subgroup, then by Theorem 2.24 we see that G is almost simple and the action on Ω
must satisfy Hypothesis 2.4. (The case with F ∗(G) =PSL2(2

p) implies that |Gω| is even, hence it is not
allowed here.) Inspection of the simple and almost simple examples now yields that Gω is cyclic. Thus
again conclusion (4) holds and our proof is complete. �

Proof of Theorem 1.3. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4. Then G has order
divisible by 3 by Lemma 2.25. If ω ∈ Ω, then we first consider the case where Gω has even order. Then
Lemma 6.2 gives exactly the possibilities in Theorem 1.3 (i). Next we suppose that Gω has odd order.
Then Corollary 2.6 reduces our situation to the case of (0, 3)-groups, so Proposition 6.3 is applicable. It
yields the details in Theorem 1.3 (ii). �

We now consider the situation where Gω is a Frobenius group of odd order. We note that Corollary 2.6
implies that G acts as a (0, 3)-group on the set of cosets of a nontrivial three point stabilizer H and
therefore one of the conclusions of Proposition 6.3 holds. Conclusion (4) is impossible because Gω is a
Frobenius group by hypothesis, so in particular it is not cyclic. Conclusions (1) and (3) pin down the
structure of G as best as possible and thus we now consider the situation where G has a regular normal
subgroup.

Lemma 6.4. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4 and let ω ∈ Ω. Suppose further
that |Gω| is odd and that |fixΩ(Gω)| ̸= 3. If G has a normal subgroup N that acts regularly on the set
of cosets of a three point stabilizer H, then G is solvable. More precisely it is one of the groups from
Lemma 2.10.

Proof. As |fixΩ(Gω)| ≠ 3, Lemma 2.5 implies that Gω is a Frobenius group with complement H. We
denote the Frobenius kernel by K and we remark that K ∩ H = 1, so that all elements of K# fix at
most two points in Ω. By hypothesis N acts transitively on G/H and therefore G = N ·H by a Frattini
argument. In particular K ≤ N .
We will show that N is a Frobenius group with complement K, using Lemma 2.1. Hence assume that
1 ̸= X ≤ K is such that NN (X) � K. Then Lemma 2.2 implies that X fixes exactly two points and
|NN (X) : NK(X)| = 2. In particular there exists a 2-element t ∈ N \K that interchanges the two fixed

points of X. We recall that KEGω and G = N ·H = NĠω, so NG(K) = NN (K) ·Gω = NN (K) ·K ·H =
NN (K) ·H.
...
It follows that t ∈ NG(H).
...
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Therefore NN (X) ≤ K for all 1 ̸= X ≤ K, establishing that N is a Frobenius group. This also implies
that every nontrivial element of K fixes a unique point in Ω.
As K is a Frobenius complement in N of odd order (because K ≤ Gω) and Frobenius kernels are
nilpotent, it follows that N is solvable. Then G = N ·H is also solvable. Let ω1, ω2 ∈ Ω be such that
fixΩ(H) = {ω, ω1, ω2}.
Let Γ be a nonregular Gω-orbit on Ω such that |Γ| ≥ 2. Then there are y ∈ G#

ω and γ ∈ Γ such that
y fixes γ. Since y also fixes ω and all elements of K# have a unique fixed point, we see that y /∈ K.
Without loss y ∈ H, which means that γ ∈ {ω, ω1, ω2}. We recall that Gω = K ·H, so ωGω

1 = ωK
1 and

ωGω
2 = ωK

2 . We deduce that {ω}, ωK
1 and ωK

2 are the only nonregular Gω-orbits.
Thus G satisfies the hypotheses of Lemma 4.3 in [21], and this lemma implies that G has a normal
subgroup A which is isomorphic to the additive group of a finite field of order 3p (where p is prime).
Moreover K is a subgroup of the multiplicative group of this field and H is the Galois group of the field.
This coincides with the series of examples in Lemma 2.10. �

The final two lemmas give additional information for conclusion (2) of Proposition 6.3.

Lemma 6.5. Let Ω be a set such that (G,Ω) satisfies Hypothesis 2.4. Let ω ∈ Ω and suppose that |Gω|
is odd. If |fixΩ(Gω)| = 3 and G contains a regular normal subgroup N , and if moreover Gω is not a
3-group, then N is solvable and N = O3,3′(N)CN (x) for some x ∈ Gω with |CN (x)| = 3.

Proof. As Gω has odd order and is not a 3-group, there exists x ∈ Gω of prime order p > 3. Now Lemma
2.15 implies that Gω contains a Sylow p-subgroup of G and hence N is a p′-group. In particular o(x)
and |N | are coprime, so the hypotheses of Lemma 2.13 are satisfied and this implies our conclusion. �

Lemma 6.6. Suppose that Hypothesis 2.4 holds and let ω ∈ Ω. Suppose that Gω is a 3-group and
that |fixΩ(Gω)| = 3. If G has a regular normal subgroup N , then Gω is cyclic, N is solvable and
G = O3,3′(N)Gω.

Proof. We set H := Gω and, by hypothesis, we let P ∈Syl3(G) be such that H ≤ P . As N acts
regularly on Ω, a Frattini argument implies that G = N oH = N · P . We also note that |fixΩ(H)| = 3
and therefore |CN (H)| = 3. In particular 3 ∈ π(N) and therefore P ∩N ̸= 1. This implies that P ̸= H.
Lemma 2.15 tells us that |P : H| ≤ 3 or that |H| = 3 and P has maximal class. In the first case
|P : H| = 3 and therefore P ∩ N (a Sylow 3-subgroup of N) has order 3. We recall that H ≤ P and
that, therefore, H normalizes NN (P ∩N) and CN (P ∩N).
Assume that CN (P ∩N) ̸= NN (P ∩N). Then |NN (P ∩N)/CN (P ∩N)| = 2 and therefore H centralizes
this quotient. This means, conversely, that CN (H) has even order. But any non-trivial 2-element of
CN (H) has a fixed point on fixΩ(H), contrary to our hypothesis that H is a 3-group.
It follows that CN (P ∩ N) = NN (P ∩ N), so by Frobenius’ p-complement Theorem N has a normal
3-complement K. This means that G = N ·P = K ·P . Since |N : K| = 3 and N acts regularly on Ω, we
obtain that K has three orbits on Ω and that K ·H is a Frobenius group with Frobenius complement
H. As H is a 3-group, we see that H is cyclic and that N = O3,3′(N), which is our conclusion. This
finishes the first case.
In the second case |H| = 3 and P has maximal class. Lemma 1.9 of [20] implies that O3′(N) acts

semiregularly on Ω and that the action of G/O3′(N) is faithful on the set Ω̃ of O3′(N)-orbits. Now,
since no almost simple group can satisfy Hypothesis 2.4 with point stabilizer a 3-group (see Theorem
1.2), we deduce that F ∗(G/O3′(N)) = F (G/O3′(N)) = O3(G)(G/O3′(G)) and that O3(G)(G/O3′(G))

acts semiregularly on Ω̃. Thus one of the following could happen:
O3(G)(G/O3′(G)) acts regularly on Ω̃, or it acts semiregularly with at least three orbits on Ω̃.
The latter possibility does not occur because a 3-group never acts fixed point freely on a 3-group and
hence H fixes three points on any H-invariant O3(G)(G/O3′(G))-orbit. Thus the first possibility occurs,
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which means that N/O3′(G) acts regularly on Ω̃. Then G/O3′(G) is a 3-group because |G/O3′(G)| =
|Ω̃| · |H| = |N/O3′(G)| · |H|. Again our claim follows. �
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