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Abstract.

In this article we prove a version of Glauberman’s Z∗3-Theorem for the prime 3 for finite groups G where

certain local subgroups are soluble.

1. Introduction

The motivation for our work stems from Glauberman’s Z∗-Theorem ([12]), published in 1966. It is a

result about elements of order 2 in finite groups, and its impact on the structure theory in general and

on the Classification of Finite Simple Groups (CFSG) in particular was so significant that it is a natural

question to ask whether similar results hold for elements of odd prime order.

Before we state the theorem that we are ultimately interested in, we recall that some element x in a

finite group G is isolated in G if and only if xG ∩ CG(x) = {x}.
Then the so-called Z∗p-Theorem is the following:

The Z∗p-Theorem.

Suppose that G is a finite group and that p is a prime. Suppose further that x ∈ G has order p and that

x is isolated in G. Then x ∈ Z∗p(G).

Here the statement x ∈ Z∗p(G) means that x is central in G modulo Op′(G), where Op′(G) denotes the

largest normal subgroup of G of order prime to p.

While the only known proof for the Z∗p-Theorem in full generality relies on the CFSG (see for example

Remark 7.8.3 on page 402 in [15]), there have been proofs for special cases that require less machinery.

Work in this area has been done, for example, by Broué ([8]), using methods from representation theory.

For the prime 3 there are special results by Rowley [20] and Toborg [26] relying on arguments from local

group theory.

In this paper we prove a version of the Z∗p-Theorem for the prime p = 3 under some solubility assumptions

for local subgroups, and we only state the full result for motivation and because we want to give meaning

to the expression that “the Z∗p-Theorem holds” in some group.

The strategy with which we ultimately plan to prove the general Z∗p-Theorem will probably invoke some

so-called K-group-hypothesis. This means that we might have to suppose that some simple sections

involved in a minimal counterexample are groups from the lists of the Classification Theorem.

Our current approach does not need any such hypothesis, but instead works with the hypothesis that

certain subgroups are soluble.

Theorem A.

Let G be a finite group and let x ∈ G be an isolated element of order 3 such that CG(x) is soluble.

Suppose further that r3(G) ≥ 3 and that the centraliser of every involution in every section of G is

soluble. If the Z∗3 -Theorem holds in all sections of G of 3-rank 2, then x ∈ Z∗3(G).

The proof of Theorem A relies upon local methods and arguments only. It follows the strategy of

Rowley and Toborg, where the key is the connection between the 3-structure of the group and the

2-structure. Often we obtain structural information in this way, for example the isomorphism type of
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the Sylow 2-subgroups is known or we find a strongly embedded subgroup. In such a situation we refer

to classification theorems that apply (see Theorem 4.4).

The article proceeds as follows: In Section 2 we prove preliminary results before, in Section 3, we

concentrate on isolated elements of prime order p. Then, in Section 4, we start to investigate a minimal

counterexample to the Z∗p -Theorem. From Section 5 on we specialise to the prime 3. Sections 6, 7 and 8

deal with the local analysis of the 3- and 2-structure and this is where, mainly, our solubility hypotheses

come into action. Then we finish our technical arguments in Section 9, prove Theorem A in Section 10

and conclude this article with a few remarks on future work and the difficulties that we expect.
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2. Preliminaries

Throughout, G denotes a finite group and p denotes a prime number. We mostly use standard group

theory notation and introduce everything else when needed. For example, if H ≤ G, then H maxG

means that H is a maximal subgroup of G. This appears in the first lemma of this section. Without

further reference we will use that groups of odd order are soluble (see [11]). A proper subgroup H of

G is strongly p-embedded if and only if p ∈ π(H) but p /∈ π(H ∩ Hg) for all g ∈ G \ H. Strongly

2-embedded subgroups are usually referred to as just strongly embedded.

Lemma 2.1. Let A be a finite group acting coprimely on G. Then the following hold:

(a) [G,A] = [G,A,A].

(b) G = [G,A] · CG(A). If G is abelian, then the product is direct.

(c) If N EG is A-invariant, then CG/N (A) = CG(A)N/N .

(d) If A is elementary abelian, then G = 〈CG(B) | BmaxA〉.
If additionally G is abelian, then G =

∏
B maxA

CG(B).

(e) If A is elementary abelian, but not cyclic, then G = 〈CG(a) | a ∈ A#〉.
If moreover G is abelian, then G =

∏
a∈A#

CG(a).

(f) There exist A-invariant Sylow p-subgroups of G and every A-invariant p-subgroup of G is

contained in one.

(g) If G is an abelian p-group and A acts trivially on Ω1(G), then [G,A] = 1.

(h) If A acts trivially on G/Φ(G), then [G,A] = 1.

Proof. We look at Section 8 of [17]. Part (a) of our lemma is 8.2.7 (b), the first part of (b) is 8.2.7 (a)

and the second part is 8.4.2. Moreover, (c) is 8.2.2, (d) follows from 8.3.4 (a), and (e) from 8.3.4 (b).

Finally (f) is 8.2.3 (a) and (c), (g) is 8.4.3 and (h) is 8.2.9 (a). �

Lemma 2.2. Let H be a group acting faithfully on the elementary abelian 2-group B. Suppose that

a ∈ H is an involution and that Q is an elementary abelian q-subgroup of H for some odd prime q such

that a inverts Q. Moreover, let k ≥ 1 be the smallest integer such that q divides 22k − 1 and |Q| = qn.

Then the following hold:

(a) |B : CB(a)| ≥ 2kn,

(b) if q ≥ 5, then |B : CB(a)| ≥ 22n,
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(c) if q > 5, then |B : CB(a)| ≥ 23n and

(d) if CB(Q) = 1, then |B| = |CB(a)|2.

Proof. This is Lemma 1.2 of Appendix A1 in [13]. �

Lemma 2.3. Let H be a group acting faithfully on the elementary abelian 2-group B. Suppose that

h, a ∈ H are such that h has odd order and a is an involution inverting h.

If D := [B, h], then CD(h) = 1 and all h-invariant 2-subgroups of CB(a) are centralised by h. If moreover

A ≤ CH(〈h, a〉) and 〈A, a〉 acts quadratically on B, then [D,A] = 1.

Proof. As B is abelian and h has odd order, Lemma 2.1 (b) implies that B = [B, h]×CB(h) = D×CB(h)

and therefore CD(h) = 1. Now let B0 ≤ CB(a) be h-invariant. Then B0 is 〈h, a〉-invariant and is

centralized by 〈a〈a,h〉〉 = 〈a, h〉, because a inverts h.

We finally suppose that A ≤ CH(〈a, h〉) and that 〈A, a〉 acts quadratically on B. Then [D,A] ≤
[B, 〈A, a〉] is centralised by 〈A, a〉. As [D,A] is h-invariant, we conclude that [D,A] ≤ CD(h) = 1. �

The simple group Sz(8) will occur several times in our investigation.

Lemma 2.4. Let K ∼= Sz(8). Then K is a 3′-group and the following holds:

(a) The outer automorphism group of K is cyclic of order 3.

(b) If T is a Sylow 2-subgroup of K, then Ω1(T ) = Z(T ) is elementary abelian of order 8. Further-

more all involutions are conjugate in K.

(c) The Sylow 5-subgroups of K are cyclic of order 5 and they are centralised by some outer

automorphism of K of order 3.

(d) The Sylow 13-subgroups of K are cyclic of order 13 and their normalisers are Frobenius groups

of order 4 · 13. Moreover Aut(K) has exactly one class of elements of order 13.

(e) K does not have a proper subgroup of odd index and order divisible by 5.

Proof. This follows from [23], see Theorem 7, Theorem 11, Proposition 8, Lemma 1, and Theorem 9. �

Lemma 2.5. Let K be a component of G of order prime to 3 and let y ∈ G be an element of order

3 such that CG(y) is soluble. Then K/Z(K) is isomorphic to Sz(8) and y normalises K. If moreover

O2(G) = 1, then K is simple.

Proof. The main result of [28] shows that K/Z(K) =: K̄ is a Suzuki group Sz(22n+1) for some positive

integer n. In addition, Lemma 2.10 of [26] and the hypothesis on CG(y) yield that y induces a non-

trivial automorphism on K. Theorem 11 of [23] implies that 3 divides 2n + 1 and its proof shows that

CK̄(y) ∼= Sz(2
1
3 (2n+1)). As CG(y) is soluble, we deduce that 2n+1 = 3 and so K̄ ∼= Sz(8). Then Theorem

2 of [1] gives that K is simple if O2(G) = 1. �

Lemma 2.6. Suppose that K, V and B are groups and that the semi-direct product KoV acts faithfully

on B. Suppose further that K ∼= Sz(8), that V is an elementary abelian 3-group of order at most 27 and

that B is an elementary abelian 2-group, and suppose that x ∈ V induces a non-trivial automorphism

on K and that CK(b) is soluble for every b ∈ B#. Then the following hold:

(a) If 1 6= B1 ≤ B is an K-invariant subgroup, then |B1| ≥ 212.

(b) If a ∈ K is an involution, then |B : CB(a)| ≥ 26.

(c) There is a maximal subgroup W of V that centralises a subgroup B0 of B of order at least 24.
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Proof. Let 1 6= B1 be a K-invariant subgroup of B and let H be a Sylow 13-subgroup of K.

Then |H| = 13 by Lemma 2.4 (d). Since K is non-abelian simple and CK(B1) is soluble by assumption,

we see that CK(B1) = 1. In particular, H acts non-trivially on B1. Let n ∈ N be such that |B1| = 2n.

As 13 does not divides |GL11(2)|, |B1| ≥ 212 and hence (a) holds. In addition H is inverted by some

involution a ∈ K by Lemma 2.4 (d), so Lemma 2.2 (a) implies that |B : CB(a)| ≥ 26. Since all involutions

of K are conjugate in K by Lemma 2.4 (b), we see that (b) is true.

Furthermore Lemma 2.4 (a) and our hypothesis on x ∈ V imply thatW := CV (K) is a maximal subgroup

of V . If W is not cyclic, then W has order 9 and Lemma 2.1 (e) gives that B =
∏

v∈W# CB(v). Thus

there is an element v ∈ W# such that 1 6= CB(v). If W is cyclic, then we set v := 1. Hence in both

cases B1 := CB(v) 6= 1 is KV -invariant and so (a) implies that |B1| ≥ 212.

We choose w ∈ W such that W = 〈w, v〉. Then CB(v) ∩ CB(w) is K-invariant. Again (a) forces

CB(w) ∩ CB(v) = CB(W ) to have size at least 212 or to be trivial.

In the first case (b) is true. In the second case 〈w, x〉 acts coprimely on B1 and so Lemma 2.1 (e) yields

that 212 ≤ |B1| = |CB(〈x, v〉) · CB(〈xw, v〉) · CB(〈xw2, v〉) · CB(〈w, v〉)|
≤ |CB(〈x, v〉)| · |CB(〈xw, v〉)| · |CB(〈xw2, v〉)|.

This provides some i ∈ {0, 1, 2} such that |CB(〈xwi, v〉)| ≥ 24. Now (c) follows because 〈xwi, v〉 is a

maximal subgroup of V . �

3. Isolated elements

In this section, G denotes a finite group and p is a prime number. For our investigation of a minimal

counterexample to the Z∗p-Theorem we analyse properties of isolated elements.

Definition 3.1. Let H ≤ G.

We say that x ∈ H ≤ G is isolated in H if and only if xH ∩ CH(x) = {x}.
A subgroup X of G is said to be strongly closed in H with respect to G if and only if, for all x ∈ X
and g ∈ G such that xg ∈ H, it follows that xg ∈ X.

A subgroup X of G is said to be weakly closed in H with respect to G if and only if, for all g ∈ G
such that Xg ≤ H, it follows that Xg = X.

Moreover we denote by Z∗p (H) the full pre-image of Z(H/Op′(H)) in H.

The following lemma clarifies the connection between the concepts just introduced.

Lemma 3.2. Let x ∈ G be a p-element, x ∈ P ∈ Sylp(G) and suppose that x is isolated in G.

Then x ∈ Z(P ). Moreover 〈x〉 is strongly closed and weakly closed in P with respect to G.

Proof. Suppose that x is isolated in G and let N := NP (CP (x)). Then

xN ⊆ xG ∩ CP (x) ⊆ xG ∩ CG(x) = {x},

whence N ≤ CG(x) and we conclude that CP (x) = P . If x is isolated in G and h ∈ G is such that

xh ∈ P , then it follows that xh ∈ xG ∩ CG(x) = {x}, because P ≤ CG(x) and x is isolated. Therefore

xh = x ∈ 〈x〉, which means that 〈x〉 is strongly closed in P with respect to G. The same argument

shows that 〈x〉 is weakly closed in P with respect to G. �

The group A5 shows that the “obvious” converse of this lemma is not true if p is odd.

Lemma 3.3. Let x ∈ G be a p-element. Then the following are equivalent:

(a) x is isolated in G.
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(b) Whenever x ∈ P ∈ Sylp(G), then xG ∩ P = {x}.
(c) Whenever x ∈ P ∈ Sylp(G), then xG ∩ CP (x) = {x}.

Proof. Let x ∈ P ∈Sylp(G). If x is isolated in G, then the fact that P ≤ CG(x) by Lemma 3.2 gives the

assertion in (b).

Of course (b) implies (c), so now we suppose that (c) holds. Let g ∈ G be such that xg ∈ CG(x).

Then 〈x, xg〉 is a p-group and therefore we may choose P ∈ Sylp(G) to be such that 〈x, xg〉 ≤ P . Then

xg ∈ xG ∩ CP (x) = {x} and it follows that xg = x. We conclude that (a) holds. �

Lemma 3.4. Let H ≤ G and suppose that x ∈ G is an isolated p-element in G.

(a) If x ∈ H, then x is isolated in H.

(b) If R is a p-subgroup of G containing x, then NG(R) ≤ CG(x). In particular x ∈ Z(R).

(c) If x ∈ N EH ≤ G, then H = N · CH(x).

(d) If N EG, then Nx is isolated in G/N .

(e) If G has cyclic Sylow p-subgroups and x 6= 1, then G has a normal p-complement.

Proof. (a) follows because xH ∩ CH(x) ⊆ xG ∩ CG(x) = {x}.
For (b) we let R ⊆ P ∈ Sylp(G) and g ∈ NG(R). Then xg ∈ xG ∩R ⊆ xG ∩ P ⊆ {x} by Lemma 3.3 (b)

and therefore xg = x.

(c) Let Q ∈ Sylp(N) be such that x ∈ Q. Then H = N · NH(Q) by a Frattini argument and (b) gives

that H = N · CH(x).

(d) Let P ∈ Sylp(G) be such that x ∈ P . Then PN/N is a Sylow p-subgroup of G/N and Nx ∈ PN/N .

Let g ∈ G be such that Nxg ∈ PN/N . Then xg ∈ PN and by Sylow’s Theorem we find some h ∈ N
such that xgh ∈ P ∩ xG = {x}. It follows that Nxg = Nxgh = Nx and so Nx is isolated in G/N by

Lemma 3.3.

(e) Let P ∈ Sylp(G) be such that 1 6= x ∈ P . Then P is cyclic by hypothesis and NG(P ) ≤ NG(〈x〉) ≤
CG(x) since x is isolated. So NG(P ) centralises 〈x〉 and Ω1(P ) ≤ 〈x〉. From Lemma 2.1 (g) we deduce that

NG(P ) = CG(P ) and then Burnside’s p-Complement Theorem (see 7.2.1 of [17]) yields the assertion. �

Lemma 3.5. Let G be a finite group and let p be an odd prime such that rp(G) ≤ 1. Suppose further

that x ∈ G is an isolated element of order p. Then x ∈ Z∗p(G).

Proof. Our hypotheses and Proposition 1.4 of [6] imply that G has cyclic Sylow p-subgroups. Hence

Lemma 3.4 (e) yields that G has a normal p-complement. Then x ∈ Z∗p(G) by Lemma 3.2. �

4. A minimal counterexample to the Z∗p-Theorem

We begin our analysis with a general minimality hypothesis, without restricting the prime p. That way

the results can be cited in future work on the Z∗p-Theorem. Throughout the remainder of this article,

G is a finite group and p is a prime number. All other notation will be explicitly mentioned at the

beginning of the section where it is used.

Hypothesis 4.1. Suppose that x ∈ G has order p and that x is isolated in G, but that x /∈ Z∗p(G).

Suppose further that x ∈ Z∗p(H) for all proper subgroups H ≤ G that contain x and that Nx ∈ Z∗p(G/N)

for all 1 6= N EG.

Notation: Let x ∈ P ∈ Sylp(G) and C := CG(x).

Lemma 4.2. Suppose that Hypothesis 4.1 holds.

(a) Whenever x ∈ H < G, then H = CH(x) ·Op′(H).
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(b) P is not cyclic.

(c) Let g ∈ G and suppose that S ⊆ C ∩ Cg. Then there exist a ∈ C and b ∈ CG(S) such that

g = ab.

(d) Suppose that U ≤ C. Then NG(U) = NC(U) · CG(U).

Proof. (a) This follows from Lemma 2.1 (c) and the definition of Z∗p (H).

(b) If P is cyclic, then x ∈ Z∗p(G) by Lemma 3.5. But this contradicts Hypothesis 4.1.

(c) The hypothesis implies that x, xg ∈ CG(S). Let x ∈ R ∈ Sylp(CG(S)). Then Sylow’s Theorem and

Lemma 3.3 (b) provide some c ∈ CG(S) such that xgc ∈ xG ∩R ⊆ {x}. Let a := gc and b := c−1. Then

a ∈ CG(x), b ∈ CG(S) and g = ab.

(d) Let g ∈ NG(U). Then Ug = U ≤ C ∩ Cg and, using (c), we may choose a ∈ C and b ∈ CG(U) such

that g = ab. This gives the statement, since a = gb−1 ∈ C ∩NG(U) = NC(U). �

One of our first reduction results is that G is almost simple.

Lemma 4.3. Suppose that Hypothesis 4.1 holds. Then G′ is non-abelian simple and G = G′〈x〉.

Proof. Assume first that N := Op′(G) 6= 1. Then Hypothesis 4.1 gives that Nx ∈ Z∗p(G/N) = Z(G/N).

But then x ∈ Z∗p(G), contrary to our hypothesis. Thus Op′(G) = 1.

If x ∈ Op(G), then Lemma 3.4 (b) implies the contradiction G = NG(Op(G)) ≤ CG(x). So x /∈ Op(G),

but we know from Lemma 3.2 that x centralises Op(G). By the previous paragraph F (G) = Op(G), so

CG(F ∗(G)) ≤ Z(F ∗(G)) ≤ F (G) = Op(G), and we deduce that x does not centralise E(G). In particular

E(G) 6= 1.

For a last preparatory statement we consider N := 〈xG〉. We note that N EG, so Op′(N) ≤ Op′(G) = 1,

which means that Z∗p (N) = Z(N). If N 6= G, then by Lemma 4.2 (a) we see that x ∈ Z(N) whence x

commutes with all its conjugates. But x is isolated, which forces x ∈ Z(G). This is a contradiction.

So we have: Op′(G) = 1, E(G) 6= 1 and 〈xG〉 = G. Next we prove that F (G) = 1.

We assume otherwise and recall that F (G) = Op(G) is centralised by x. Then all conjugates of x cen-

tralise F (G), so G = 〈xG〉 centralises F (G), whence F (G) ≤ Z(G). We consider the natural epimorphism

− : G → G/Op(G). Then Op(Ḡ) = 1 and 1 6= x̄ ∈ Z∗p (Ḡ). Let N denote the full pre-image of Op′(Ḡ)

in G. Then Op(G) is a central Sylow p-subgroup of N , whence N = Op(G) × Op′(N) by Burnside’s

p-complement Theorem (7.2.1 of [17]). Now Op′(N) ≤ Op′(G) = 1 and consequently x ∈ Z∗p (Ḡ) = Z(Ḡ).

But this implies that x ∈ Op(Ḡ) = 1, which is false. Therefore F (G) = 1.

Finally let E be a component of G that is not centralised by x. As 〈EG〉EG, this group has non-trivial

Sylow p-subgroups, and x centralises one of them by Lemma 3.2. Then x centralises a Sylow p-subgroup

of E. If E 6= Ex, then E has a central non-trivial Sylow p-subgroup. This is impossible because E = E′

is perfect. It follows that x normalises E. Moreover x is isolated in E〈x〉 by Lemma 3.4 (a). If E〈x〉 6= G,

then Lemma 4.2 (a) implies that x ∈ Z∗p(E〈x〉) and hence x centralises E. This contradicts our choice

of E. Altogether F ∗(G) = E(G) = E and E · 〈x〉 = G; in particular E = G′ is non-abelian and simple

because Z(E) ≤ F (G) = 1. �

Theorem 4.4. Suppose that Hypothesis 4.1 holds. Then

(a) G has 2-rank at least 3,

(b) G does not have a strongly embedded subgroup,

(c) G is not S4-free,

(d) the Sylow 2-subgroups of G do not have any non-trivial strongly closed abelian subgroups, and

(e) a Sylow 2-subgroup of G is not isomorphic to one of PSL3(2n) for any n ≥ 2.
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In particular G is not isomorphic to PSL3(3), to PSL2(r) for some prime power r, to PSU3(q) or to

Sz(q) for some power q of 2.

Proof. If G′ is a K–group in the sense of [15], then 〈x〉 is weakly closed in P with respect to G by

Lemma 3.2. So Proposition 7.8.2 of [15] is applicable, and Lemma 4.2 (b) shows that P is not cyclic. If

G′ ∼= PSU3(p), then G = G′ by Theorem 2.5.12 of [15]. Lemma 4.3 and elementary computations show

that P is extra-special of order p3 and exponent p, and that Z(P ) is inverted in G. This is false because

x ∈ Z(P ). Hence G′ is one of the groups in Part (c) or (d) of Proposition 7.8.2 of [15], which we refer

to as (*).

We note that G has even order and that O(G) = 1 by Lemma 4.3. If G has 2-rank 1, then it is soluble

or, by the main result in [7], it has a central involution. Both cases cannot occur by Lemma 4.3. If G

has 2-rank 2, then we apply the second main theorem of [2] to see that G′ is isomorphic to one of A7,

M11, PSU3(4), PSL2(q), PSL3(q) or PSU3(q) for some odd prime power q. This contradicts (*).

If G has a strongly embedded subgroup, then we obtain a contradiction to (*) by applying the main result

of [5], Burnside’s p-Complement Theorem (see for example 7.2.1 in [17]), the Brauer-Suzuki Theorem

[7], and Lemma 4.3.

The statements in (c) and (d) are equivalent by Theorem C on p. 47 in [13]. If G is S4-free or if the

Sylow 2-subgroups of G have a non-trivial strongly closed abelian subgroup, then G′ is a Goldschmidt

group in the sense of [13]. This contradicts (*) again.

For (e) we apply Theorem A of [9]; it shows that G′ ∼= PSL3(2n) which we already know to be impossible.

�

Remark 4.5. We note that A5 and A6 do not have any isolated elements of order 3.

Lemma 4.6. Suppose that Hypothesis 4.1 holds and let q be a prime. Then the maximal x-invariant

q-subgroups (with respect to inclusion) are trivial or Sylow q-subgroups of G. Moreover CG(x) acts

transitively on the set of x-invariant Sylow q-subgroups of G.

Proof. For p = q the statement follows from 3.2 and Sylow’s Theorem.

Let q 6= p and let Q be an x-invariant q-subgroup of G that is maximal with respect to inclusion.

Suppose that Q 6= 1. Then we have that x ∈ NG(Q) < G by Lemma 4.3. Now Lemma 4.2 (a) yields

that NG(Q) = Op′(NG(Q)) · CNG(Q)(x). By Lemma 2.1 (f) the group Op′(NG(Q)) has an x-invariant

Sylow q-subgroup, so NG(Q) also has an x-invariant Sylow q-subgroup. Then the maximal choice of Q

forces Q ∈ Sylq(G).

Suppose that Q1 is a further x-invariant Sylow q-subgroup of G. Then by Sylow’s Theorem there first

is some g ∈ G such that Q = Qg
1 and hence x, xg ∈ NG(Q), and then there is some h ∈ NG(Q) such

that 〈x, xgh〉 is a p-subgroup of NG(Q). Now the fact that x is isolated in G forces x = xgh and hence

gh ∈ CG(x). Moreover Qgh
1 = Qh = Q, which proves the lemma. �

5. The special case p = 3

From now on we focus on the prime 3.

Hypothesis 5.1. In addition to Hypothesis 4.1 we let p = 3.

Lemma 5.2. Suppose that Hypothesis 5.1 holds. Then C contains an element y of order 3 that is

inverted by a 2-element. In particular G possesses an x-invariant Sylow 2-subgroup.
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Proof. G is not S4-free by Theorem 4.4 (c), in particular G is not S3-free and we let N E H ≤ G be

such that H/N ∼= S3 and R ∈ Syl3(H). By Sylow’s Theorem we may suppose that R ≤ P and hence

that x centralises R. With a Frattini argument we moreover see that H = NH(R) · RN = NH(R) · N
and hence NH(R)/NN (R) ∼= H/N ∼= S3. In particular there is some 2-element a ∈ NH(R) such that

[R, a] 6= 1. Let z ∈ R# be such that 1 6= [z, a]. Then [z, a]a = (z−1za)a = (z−1)az = [a, z] = [z, a]−1. Let

y ∈ 〈[z, a]〉 have order 3. Then ya = y−1 ∈ R ≤ C and Lemma 4.2 (c) provides some c ∈ C such that

y−1 = ya = yc. Moreover a suitable power of c is a 2-element of C that inverts y.

It follows that C has even order. In particular there exists a non-trivial x-invariant 2-subgroup of G,

and then Lemma 4.6 gives that G has an x-invariant Sylow 2-subgroup. �

Definition 5.3. Let q be prime.

(a) Let S be a Sylow q-subgroup of G. We denote by Γ(S) the graph with vertex set VS := {A |
A ≤ S is elementary abelian and |A| ≥ p2} and edge set ES := {{A,B} ∈ VS × VS | A 6= B

and A ≤ CG(B)}. Following the definition in Section 4.1 of Chapter II in [19] we say that G

is connected for the prime q if and only if the graph Γ(S) is connected. For brevity we also

say that S is connected (omitting the prime).

(b) For all q-subgroups U ≤ G we define the group

WU := 〈Oq′(CG(a)) | a ∈ U and o(a) = q〉.

Lemma 5.4. Suppose that Hypothesis 5.1 holds and that r3(G) ≥ 3, but that P is not connected. Then

P is isomorphic to a Sylow 3-subgroup of A9.

Proof. We proceed in several steps.

(I) Z(P ) is cyclic and r(P ) = 3. Moreover, there is a normal elementary abelian subgroup V of P of

order 27 containing a normal subgroup of order 9 of P , and x ∈ V .

Proof. The first assertions follow from the definition of connectedness and Corollary 10.22 (iii) of [14]. By

a result of Konvisser (see for example Proposition 10.17 of [14]), there is an elementary abelian normal

subgroup V of order 27 of P . The next statement is Lemma 1.4 of [6], and x ∈ V because x ∈ Z(P )

and r(P ) = 3. �

We keep the subgroup V from the previous step.

(II) There is an element y ∈ P of order 3 such that CP (y) = 〈y〉 × K, where K ≤ CP ([V, y]) is

cyclic and Ω1(K) = 〈x〉. Moreover V 〈y〉 is isomorphic to a Sylow 3-subgroup of A9. In particular

Q := [V, y]〈y〉 is extra-special of order 27 and exponent 3 and 〈y, x〉 = Ω1(CP (y)) ≤ Q is not normal

in P .

Proof. Lemma 10.21 (ii) and (iii) of [14] provide an element y ∈ P such that CP (y) = 〈y〉×K for some

cyclic subgroup K ≤ P . In particular r(CP (y)) = 2. Moreover x ∈ Z(P ) ≤ CP (y) by Lemma 3.2 and

x ∈ V by (I).

As r(CP (y)) = 2, it follows that y /∈ V and that CV (y) is cyclic. The automorphism group of V has

exactly two conjugacy classes of elements of order 3 by [10] (see page 13). So there is just one class of

elements of order 3 that do not centralise a subgroup of order 9. Hence the action of y on V is fully

determined. It is equivalent to the conjugation action of (147)(258)(369) on 〈(123), (456), (789)〉 in A9.

Thus V 〈y〉 is isomorphic to a Sylow 3-subgroup of A9 and Q = [V, y]〈y〉 is extra-special of order 27 and

exponent 3 and contains Ω1(Z(V 〈y〉)) = 〈x〉.
8



The group [V, y] is CP (y)-invariant and has order 9. Thus we see that CP ([V, y]) ∩ CP (y) is a maximal

subgroup of CP (y) = 〈y〉 ×K. Since y does not centralise [V, y], we can choose the notation such that

K = CP ([V, y]) ∩ CP (y). In particular x ∈ K and so Ω1(K) = 〈x〉.
We finally conclude that Ω1(CP (y)) = 〈y, x〉 ≤ Q ≤ V 〈y〉, but 〈y, x〉 is not normal in V 〈y〉, and hence

it is not normal in P . �

(III) Ω1(P ) = V 〈y〉, P = Ω1(P ) ·K and Q is the unique subgroup of P of its isomorphism type.

Proof. We set R0 := CP (y) and for all integers i ≥ 1 we define Ri := NP (Ri−1). By (II) we have that

〈x, y〉 = Ω1(R0) is characteristic in R0. We deduce that 1 6= |R1 : R0| ≤ |NP (Ω1(R0)) : R0| ≤ 3, as

|Ω1(R0)| = 9. On the other hand (II) implies that Ω1(R0) is a normal subgroup of Q. Altogether it

follows that R1 = R0Q = (〈y〉 ×K)([V, y]〈y〉) = Q ∗K by (II). We deduce that Ω1(R1) = Q, because

Ω1(K) ≤ Ω1(R0) = 〈x, y〉 ≤ Q.

We remark that V ∩R1 = V ∩ [V, y]R0 = [V, y](V ∩R0) = [V, y]〈x〉 = [V, y] is a maximal subgroup of V .

Hence R1 is a maximal subgroup of V ·R1 and so V ·R1 ≤ R2. Moreover R2 = NP (R1) ≤ NP (Ω1(R1)) =

NP (Q) and CP (Q) ≤ CP (y) ∩ CP ([V, y]) = K ≤ CP (Q).

This yields that QCP (Q) = Ω1(R1) ·K = R1. As x is isolated in G, Theorem 1 of [29] together with

Hilfssatz II 9.12 of [16] gives that |NP (Q)/QCP (Q)| divides |Sp2(3)| = |SL2(3)| = 3 · 23. In conclusion,

3 ≥ |NP (Q) : QCP (Q)| ≥ |R2 : R1| ≥ 3, and this implies that R2 = NP (Q) = V ·R1.

By (II) we have that V ·Q = V 〈y〉 is isomorphic to a Sylow 3-subgroup ofA9. In particular Ω1(R2) = V ·Q
contains exactly one subgroup isomorphic to Q. Now we see that R3 = NP (R2) ≤ NP (Ω1(R2)) ≤
NP (Q) = R2 and consequently P = R2. �

Assume for a contradiction that K 6= 〈x〉. Then we apply the generalised Thompson Transfer Lemma

in the sense of Proposition 15.15 of [14] to Ω1(P ), P and G.

We have that Ω1(P ) is a proper normal subgroup of P with cyclic factor group and so Condition (a)

of Proposition 15.15 of [14] holds. Let u ∈ K be such that u3 = x. Then u has order 9 and every

G-conjugate of u3 = x in P is equal to x ∈ Ω1(P ), because x is isolated in G. This is Condition (b).

If ug ∈ P is an extremal conjugate of u, then ug has order 9 and centralises a subgroup of P that is

isomorphic to Q. From (III) we see that ug ∈ CP (Q). This implies that ug /∈ Ω1(P ), as CΩ1(P )(Q) ≤
CP (y) ∩ V 〈y〉 = 〈x, y〉. Consequently 15.15 (i) of [14] is false.

As G does not have a normal subgroup N such that u /∈ N by Lemma 4.3, we see that the assertion of

Proposition 15.15 in [14] does not apply. Thus we deduce that Condition (c) of the hypothesis is false.

Hence there is some extremal conjugate ug ∈ P such that ug /∈ Ω1(P )u. Since P/Ω1(P ) is cyclic, we

obtain an i ∈ N such that i ≡ 2 mod 3 and some v ∈ Ω1(P ) such that ug = uiv. Moreover ug is extremal

and therefore ug centralises Q. In particular ug ∈ CP (y) = 〈y〉×K and hence ug ∈ CCP (y)(Q) = K. Since

K is cyclic and u ∈ K, we may suppose that ug = ui. Finally xg = (u3)g = (ui)3 = (u3)i = xi = x2,

which contradicts the fact that x is isolated. �

Lemma 5.5. Suppose that Hypothesis 5.1 holds. If C is soluble, then |G : C| is even.

Proof. Let C be soluble. We know from Theorem 4.4 (a) that r2(G) ≥ 3. We assume for a contradiction

that |G : C| is odd, which means that C contains a Sylow 2-subgroup of G. Then our plan is to show

that G has a strongly embedded subgroup (contrary to Theorem 4.4 (b)). Let T ∈ Syl2(C) ⊆Syl2(G)

and let S be a Sylow 2-subgroup of O2′,2(C) that is contained in T . Moreover we set Z := Ω1(Z(S)).

(I) If a ∈ T is an involution, then CG(a) = CC(a)O(CG(a)). In particular CG(a) is soluble.
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Proof. Let a ∈ T be an involution. Then x ∈ CG(a) and CG(a) = CC(a)O3′(CG(a)) by Lemma 4.2 (a).

Thus Lemma 2.7 of Rowley ([20]), applied to O3′(CG(a)), yields that CG(a) = CC(a)O(CG(a)) as stated.

Then CG(a) is soluble because C is. �

(II) |Z| ≥ 4.

Proof. We recall that r2(G) ≥ 3 and therefore T is not cyclic.

Next assume that Z(S) is cyclic and let a denote the unique involution in Z(S). Then 〈a〉O(C)/O(C) =

Ω1(Z(O2(C/O(C)))) E C/O(C) and hence [a,C] ≤ O(C). We know that a /∈ Z∗(G) by Lemma 4.3,

so by Glauberman’s Z∗-Theorem (see for example [12]) a is not isolated in G. Lemma 3.3 gives that

aG ∩ T 6= {a} and we choose g ∈ G such that a 6= ag ∈ T . Then ag ∈ C ∩ Cg and Lemma 4.2 (c)

gives elements c ∈ C and b ∈ CG(ag) such that g = cb. In particular ag = ac which implies that

a−1 · ac ∈ T ∩ [a,C] ≤ T ∩ O(C) = 1. Therefore ac = a. This is a contradiction, showing that Z(S) is

not cyclic and hence |Z| ≥ 4. �

(III) Z is contained in an elementary abelian subgroup of order at least 8 of T .

Proof. If |Z| ≥ 8, then the assertion follows. Hence suppose that |Z| = 4. We recall that r2(G) ≥ 3,

so we let A ≤ T be an elementary abelian subgroup of order at least 8. Now Z E T , so A normalises Z

and A/CA(Z) is isomorphic to a subgroup of S3. If possible, then we choose a ∈ CA(Z) \ Z and we see

that 〈Z, a〉 is elementary abelian of order 8. Otherwise CA(Z) ≤ Z, then CA(Z) = Z and therefore Z is

contained in the elementary abelian subgroup A of order at least 8 of T . �

(IV) W := WZ has odd order and is normalised by NG(S) and by C.

Proof. Using (I) and (III), we see from Lemma 1.4 of [27] that W has odd order. As Z is a 2-group,

we do not need any hypothesis on known simple groups to apply the lemma. As Z is a characteristic

subgroup of S, we also know that NG(S) normalises W .

A Frattini argument gives that C = O2′,2(C) ·NC(S) = O(C) ·NC(W ). We apply Lemma 2.1 (e) and

the fact that Z is elementary abelian, and not cyclic, to see that O(C) = 〈CO(C)(c) | c ∈ Z#〉.
Let c ∈ Z#. Then CO(C)(c)O(CG(c)) is a normal subgroup of odd order of CC(c)O(CG(c)) = CG(c) by

(I). It follows that O(C) ≤WZ = W and then C ≤ NG(W ) as stated. �

(V) Let a ∈ T be an involution. Then CG(a) ≤ NG(W ) and O(CG(a)) ≤W .

Proof. Suppose first that CT (a) has an elementary abelian, non-cyclic subgroup that, in the graph Γ(T )

(see Definition 5.3), lies in the connected component of Z. Then we apply again Lemma 1.4 of [27] to see

that O(CG(a)) ≤W . Thus the fact that C ≤ NG(W ) by (IV) implies that CG(a) = CC(a) ·O(CG(a)) ≤
NG(W ) by (I).

So we may suppose that G is not connected for the prime 2 and that a ∈ T \ CT (Z). If c ∈ C is

such that ac ∈ CT (Z), then we have that CG(a) = CG(ac)c
−1 ≤ NG(W )c

−1

= NG(W ) and hence

O(CG(a)) = O(CG(ac))c
−1 ≤ W c−1

= W because C ≤ NG(W ). So we are left with the case where

a /∈ CT (Z) and a is not C-conjugate into CT (Z). Then Thompson’s Transfer Lemma implies that

C 6= O2(C). Now Lemma 4.2 (c), Lemma 4.3 and the Focal Subgroup Theorem (e.g. Theorem 15.7 in

[14]) give that

T = T ∩G′ = 〈a−1ag | g ∈ G and a, ag ∈ T 〉 = 〈a−1ag | a, ag ∈ T and g ∈ CG(a)C〉
= 〈a−1ag | g ∈ C and a, ag ∈ T 〉 = T ∩ C ′, which is impossible. �

Let t ∈ NG(W ) be an involution. By Sylow’s Theorem there is some g ∈ NG(W ) such that tg ∈ T .

We conclude that (CG(t))g = CG(tg) ≤ NG(W ) and hence CG(t) ≤ NG(W ) from (V). This shows that

NG(W ) is a strongly embedded subgroup of G or that O2′(G) ≤ NG(W ). The first case cannot occur
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by Theorem 4.4 (b). In the second case we deduce from Lemma 4.3 that W = 1 and so (I) and (V)

imply that CG(a) ≤ C for all involutions a ∈ T . Thus we see, again using Sylow’s Theorem, that C is

strongly embedded in G, again contrary to Theorem 4.4 (b). �

6. The 3-structure of G

The last lemma of the previous section motivates further investigation of the case where C is soluble.

Under mild additional conditions, we will find a strongly 3-embedded subgroup of G that contains C.

Such a subgroup will be key in our further analysis of the 2-structure and the 3-structure of G.

Hypothesis 6.1. Suppose that Hypothesis 5.1 holds. We keep the notation from Hypothesis 4.1 and we

further suppose that C is soluble.

Lemma 6.2. Suppose that Hypothesis 6.1 holds and that r3(G) ≥ 3. Then P is connected.

Proof. Assume for a contradiction that P is not connected. Then Lemma 5.4 implies that P is isomorphic

to a Sylow 3-subgroup of A9. We deduce that 〈x〉 = Z(P ), from Lemma 3.2, and so x ∈ P ′ ≤ G′. In

particular G = G′ is simple by Lemma 4.3. A theorem of Grün (see 7.1.8 of [17]) yields that C = O3(C),

because 〈x〉 is weakly closed in P with respect to G by Lemma 3.2. Let − : C → C/O3′(C) be the

natural epimorphism. Then P̄ ∼= P , C̄ = O3(C̄) and, as C is soluble by Hypothesis 6.1, we see that

F ∗(C̄) = O3(C̄). We set Q̄ := O3(C̄). Then CP̄ (Q̄) ≤ Q̄ and Q̄ E P̄ . Consequently the structure of P

implies that Q̄ = P̄ or that Q̄ is a maximal subgroup of P̄ .

The maximal subgroups of P̄ have order 27. One is elementary abelian and three are extra-special. If R̄

is an extra-special maximal subgroup of P̄ , then NC̄(R̄) centralises Z(R̄) = 〈x̄〉. Thus we deduce from

Theorem 1 of [29] the structure of D̃ := NC̄(R̄)/R̄CC̄(R̄). If R̄ has exponent 9, then D̃ has order 3. If R̄

has exponent 3, then the theorem yields that D̃ is isomorphic to a subgroup of Sp2(3). With Hilfssatz

II 9.12 in [16] we moreover see that Sp2(3) ∼= SL2(3) and so D̃ has a normal 3-complement.

In both cases O3(NC̄(R̄)) 6= NC̄(R̄) and hence C̄ 6= NC̄(R̄). Thus Q̄ is not extra-special. Since P̄ has

a unique maximal subgroup R̄0 that is extra-special of exponent 3 (and hence R0 is characteristic in

P̄ ), we moreover conclude that NC̄(P̄ ) ≤ NC̄(R̄0). Consequently Q̄ 6= P̄ , because otherwise C̄ = NC̄(P̄ )

implies that C̄ = O3(C̄) = O3(NC̄(P̄ )) = O3(NC̄(R̄0)) � NC̄(R̄0) ≤ C̄. This is a contradiction.

In conclusion Q̄ is elementary abelian of order 27 and so C̄/Q̄ is isomorphic to a subgroup Ĉ of GL3(3)

fixing a non-zero vector v ∈ V , where V is a vector space of dimension 3 over GF(3). Moreover 3 divides

the order of Ĉ, but 9 does not, O3(Ĉ) = 1 and O3(Ĉ) = Ĉ. Let Ĉ0 := Ĉ∩SL3(3). Then Ĉ0 is a normal

subgroup of Ĉ of index at most 2. Hence O3(Ĉ0) = 1 and so page 13 of [10] yields that Ĉ0 is a subgroup

of 2S4. Again 3 divides the order of Ĉ and therefore of Ĉ0. We recall that O3(Ĉ0) = 1 and hence Ĉ0

has a subgroup Â isomorphic to A4. Furthermore we obtain from [10] that SL3(3) has only one class of

involutions. Therefore all involutions centralise a subspace of dimension 1 of V and invert a subspace

of dimension 2 of V . As Â fixes v, all involutions of Â fix the same 1-dimensional subspace of V . Let

a, b ∈ Â be two distinct involutions and let Va and Vb be the subspaces that are inverted by a and b,

respectively. Then ab centralises Va ∩ Vb, which contradicts our statement above. �

Lemma 6.3. Suppose that Hypothesis 6.1 holds and that r3(G) ≥ 3. Then G has a strongly 3-embedded

subgroup that contains C.

Proof. Let y ∈ G be an element of order 3. By Sylow’s Theorem we may suppose that y ∈ P . We

recall that x ∈ Z(P ) by Lemma 3.2, so x ∈ CG(y) and therefore CG(y) = CC(y)O3′(CG(y)) by Lemma

4.2 (a). As C is soluble by Hypothesis 6.1, we deduce that F ∗(CG(y)/O3′(CG(y))) is a 3-group. In
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addition Corollary A1 of [20] provides some y ∈ P of order 3 such that O3′(CG(y)) 6= 1. Now we may

apply Theorem A of [27], which gives our assertion. �

Lemma 6.4. Suppose that Hypothesis 6.1 holds and that M is a strongly 3-embedded subgroup of G

such that C ≤M . The the following is true:

(a) For all 3-subgroups 1 6= R of M we have that NG(R) ≤M .

(b) The group M is 3-soluble and a maximal subgroup of G.

(c) Let q be a prime. Then there is a Sylow q-subgroup Q of M such that PQ is a subgroup of M

and [Q, x] is P -invariant.

(d) Suppose that H ≤ G is 3-soluble and that H ∩ C has non-cyclic Sylow 3-subgroups.

Then H ≤M .

(e) If x ∈ U ≤ G is such that U has non-cyclic Sylow 3-subgroups, then M is the unique maximal

subgroup of G containing U .

Proof. For (a) let 1 6= R be a 3-subgroup of M and let g ∈ NG(R). Then R ≤M ∩Mg and so 3 divides

M ∩Mg. This implies that g ∈M .

For (b) we see that x ∈M < G. Hence Lemma 4.2 (a) yields that M = C ·O3′(M). Then M is 3-soluble

because C is soluble. Let L be a maximal subgroup of G such that M ≤ L. As x ∈ M ≤ L we see

that L = CL(x) · O3′(L) by Lemma 4.2 (a). Using Lemma 4.2 (b) let V ≤ P be an elementary abelian

subgroup of order 9. Then Lemma 2.1 (e) implies that O3′(L) = 〈CO3′ (L)(v) | v ∈ V #〉 ≤ M , because

M is strongly 3-embedded. Thus L ≤M by (a).

The statement in (c) is clear if q = 3 or if q /∈ π(M), so we suppose that q 6= 3 and q ∈ π(M). By Lemma

2.1 (f) there exists a P -invariant Sylow q-subgroup Q0 of O3′(M). Then a Frattini argument and Lemma

4.2 (a) yield that M = NM (Q0) ·O3′(M) = NC(Q0) ·O3′(NM (Q0)) ·O3′(M) = NC(Q0) ·O3′(M).

As NC(Q0) is soluble and contains P , we find a Sylow q-subgroup U of NC(Q0) such that PU is a

subgroup of NC(Q0). Now Q := UQ0 is a Sylow q-subgroup of M and PQ = (PU)Q0 is a subgroup of

M . Lemma 4.2 (a) implies that [Q, x] ≤ [M,x] ∩ Q ≤ O3′(M) ∩ Q = Q0. Now we let y ∈ P . First we

observe that [Q, x]y ≤ Qy
0 = Q0 ≤ Q because Q0 is P -invariant. Then Lemma 2.1 (a) and the fact that

x ∈ Z(P ) give that [Q, x]y = [Q, x, x]y = [[Q, x]y, xy] ≤ [Q, xy] = [Q, x].

For (d) let P0 be a Sylow 3-subgroup of H ∩ C and P0 ≤ R ∈ Syl3(H). Then for all subgroups U of

P0 we have that NG(U) ≤ M by (a), and in particular the 3-group NR(P0) lies in M . Then (a) forces

R ≤ M . We also know that R is not cyclic by hypothesis, so we let Y ≤ R be an elementary abelian

subgroup of order 9. Lemma 2.1 (e) yields that O3′(H) = 〈O3′(H) ∩CG(y) | y ∈ Y #〉 ≤M by (a).Next

we let R0 := O3′,3(H)∩R. Then NG(R0) ≤M by (a) since R ≤M , and a Frattini argument gives that

H = NH(R0) ·O3′(H), because H is 3-soluble. Consequently H = NH(R0) ·O3′(H) ≤M as stated.

Finally for (e) we suppose that U ≤ G is such that the Sylow 3-subgroups of U are not cyclic and x ∈ U .

Let L be a maximal subgroup of G containing U . Then Lemma 4.2 (a) implies that L = CL(x) ·O3′(L).

In particular L is 3-soluble and L ∩ C has non-cyclic Sylow 3-subgroups. Thus (d) implies that L ≤M
and hence L = M . �

Lemma 6.5. Suppose that Hypothesis 6.1 holds and that r3(G) ≥ 3. Then |M : C| is even.

Proof. Assume for a contradiction that |M : C| is odd. By Theorem 4.4 (c) we know that G has a section

isomorphic to S4. We know follow the ideas of Lemma 5.2 in [20]. There is a non-trivial 2-subgroup T

such that NG(T ) involves S4 by Lemma 2.3 of [20], and we choose T of maximal order with that property.

Let H := O2′(NG(T )). By conjugation we may choose T such that NP (T ) is a Sylow 3-subgroup of
12



NG(T ).

From Lemma 6.3 we obtain a strongly 3-embedded subgroup M of G such that C ⊆M .

(I) T = O2(NG(T )) and O2′,2(H) = O(H)O2(H).

Proof. The maximal choice of T implies that T = O2(NG(T )) = O2(H). If S0 ∈ Syl2(O2′,2(H)), then

T = O2(H) is contained in S0. A Frattini argument yields that H = NH(S0) ·O2′,2(H) = NH(S0) ·O(H)

and so NH(S0)/NO(H)(S0) ∼= H/O(H). Since NG(T ) involves the group S4, H does as well. In particular

H/O(H) is not S4-free. Altogether NG(S0) is not S4-free and the maximal choice of T forces S0 = T .

In particular O2′,2(H) = O(H)O2(H). �

(II) A Sylow 2-subgroup S0 of C has rank 1 and CG(S0) � M . In addtion CG(y) has odd order for

every y ∈ P \ 〈x〉 of order 3.

Proof. As C is soluble by Hypothesis 6.1, there is a Sylow 2-subgroup S0 of C such that PS0 is a subgroup

of C. By our assumption S0 is a Sylow 2-subgroup of M and so Lemma 5.5 implies that NG(S0) �M .

Consequently, we see from Lemma 4.2 (d) that CG(S0) �M , as NG(S0) = NC(S0)CG(S0), and Lemma

6.4 (e) forces CG(a) to have cyclic Sylow 3-subgroups for every a ∈ S0 ≤ C. In particular CG(y) has

odd order for every y ∈ P \ 〈x〉 of order 3.

From the hypothesis r(P ) ≥ 3 we moreover obtain an elementary abelian subgroup V of P of order 9

such that V ∩ 〈x〉 = 1. Then for all v ∈ V # the investigation above says that CG(v) has odd order.

Hence we deduce from Lemma 2.1 (e) that O2(S0P ) = 〈CO2(S0P )(v) | v ∈ V #〉 = 1. This implies that

F ∗(S0P ) = O3(S0P ).

Assume for a contradiction that S0 has an elementary abelian subgroup A that is not cyclic. Then for all

a ∈ A# our assumption implies that Ω1(CP (a)) ≤ 〈x〉. By Corollary 14.4 of [6] there is a characteristic

subgroup R of O3(S0P ) of exponent 3 such that every non-trivial 3′-automorphism of O3(S0P ) induces

a non-trivial automorphism on R. Then Lemma 2.1 (e) forces R = 〈CR(a) | a ∈ A#〉 ≤ 〈x〉. Thus A

centralises R and hence it centralises O3(S0P ) = F ∗(S0P ). But this is a contradiction. �

(III) The group H/O(H) has elements of order 3, but no elements of order 6.

Proof. Since H involves S4, the group H/O(H) contains an element of order 3.

Assume for a contradiction that H/O(H) has an element of order 6. Then there exists a 2-element b ∈ H
such that CH(b) is divisible by 3. This gives an element y ∈ H of order 3 such that CG(y) has even

order. Since NP (T ) is a Sylow 3-subgroup of NG(T ), we may suppose that y ∈ P . Hence (II) implies

that y ∈ 〈x〉 and in particular x ∈ H ≤ NG(T ). As NG(T ) does not have a normal 3-complement,

Lemma 3.4 (e) and 6.4 (e) show that NG(T ) ≤ M . Let S0 ∈ Syl2(M) be such that T ≤ S0. Then

CG(S0) ≤ CG(T ) ≤ NG(T ) ≤M contradicts (II). �

We see by (I) that G and NG(T ) satisfy Voraussetzung I of [22]. Furthermore H/O(H) contains an

element of order 3, but no element of order 6 by (III). We apply Satz A of [22] and let S be a Sylow

2-subgroup of G. With regard to Lemma 5.2 we may suppose that S is x-invariant.

By Theorem 4.4 (a) and (e) the group S is neither dihedral, semi-dihedral, a wreath product C2n o C2

for some n ≥ 1 nor isomorphic to a Sylow 2-subgroup of PSL3(2n) for some n ≥ 2. Hence (a), (b) and

(c) of Satz A are false. Additionally Part (d) of Theorem 4.4 implies that Part (f) of Satz A does not

hold.

Assume for a contradiction that Satz A (d) of [22] holds. Then Z(S) is cyclic and hence it is centralised

by x. If x ∈ O(CG(Z(S))), then [S, x] ≤ O(CG(Z(S)))∩S = 1, contrary to Lemma 5.5. Thus Satz A (d)

of [22] implies that x embeds into A5. But this is impossible by Remark 4.5.
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We conclude that Part (f) of Satz A in [22] is true. Then J(S) is isomorphic to a Sylow 2-subgroup

of PSL3(4), in particular it has exactly two, and it is x-invariant. Now x normalises both elementary

abelian subgroups of J(S) of order 24, so we let A be one of them and set N := NG(A). Then Satz

A (e) of [22] yields that N/CG(A) ∼= A6
∼=PSL2(9), which by Remark 4.5 does not contain an isolated

element of order 3. Thus x centralises A. But A is elementary abelian of order 24, contrary to (II). �

7. The 2-structure of G

We prove first that G is connected for the prime 2. Then we extend our hypothesis and show that G

has local characteristic 2, and we use this information in order to restrict the structure of a strongly

3-embedded subgroup of G containing C.

Theorem 7.1. Suppose that Hypothesis 6.1 holds and that r3(G) ≥ 3. Then G is connected for the

prime 2.

Proof. By Lemma 6.3 there is a strongly 3-embedded subgroup M of G containing C. Then Lemma

6.4 (c) provides a Sylow 2-subgroup T of M such that [T, x] is normalised by P and TP ≤ M , and T

is contained in an x-invariant Sylow 2-subgroup S of G by Lemma 4.6.

We assume for a contradiction that S is not connected. Let c ∈ Z(S) be an involution and set S0 := [S, x].

(I) Z(S) is cyclic and S does not have any normal elementary abelian subgroups of rank 3 or more. In

particular c is the unique involution in Z(S).

Proof. It follows directly from our assumption and Definition 5.3 (a) that Ω1(Z(S)) is cyclic. Therefore

Z(S) is cyclic. The lemma in Section 4.1 of Chapter II in [19] yields the second assertion. �

(II) S has a unique elementary abelian normal subgroup A of order 4, and then c ∈ A ≤ C. Moreover

CS(A) is a maximal subgroup of S.

Proof. S ∈ Syl2(G′) by Lemma 4.3 and S � D8 by Theorem 4.4 (a). Then Lemma 1 of [18] gives the

first statement. It follows from (I) that c ∈ A, and the uniqueness property gives that Ax = A because

S is x-invariant. Moreover, x normalises Z(S) and in particular cx = c. This forces [A, x] = 1. Then

CS(A) is a maximal subgroup of S because A � Z(S) by (I). �

We keep the subgroup A from (II) and we let a ∈ A be such that A = 〈a, c〉.
(III) Let Q ≤ S0 be x-invariant and such that [Q, x] = Q ∼= Q8. Then NS(Q) = CS(Q)Q 6= S.

Proof. We note that x ∈ NG(Q) and Aut(Q) ∼= S4. As x is isolated, this implies that NG(Q) =

〈x〉QCG(Q). In particular NS(Q) = QCS(Q). Assume for a contradiction that S = CS(Q)Q. Then

Q E S and so c ∈ Q. Since A is normal in S, we have that [A,S] ≤ A ≤ C. This implies that

[[A,S], x] = 1 = [[x,A], S]. Thus the Three Subgroups Lemma (see 1.5.6 of [17]) yields that 1 =

[[S, x], A] = [S0, A] ≥ [Q,A].

Using (I) we see that A � Z(S). Hence there is some d ∈ S = CS(Q)Q = CS(Q)CS(A) such that

ad = ac. We may choose d ∈ CS(Q). Then we let B be a maximal abelian normal subgroup of CS(Q)

that contains A and we show that B = A:

In order to do this we let t ∈ Q be of order 4. Then t2 = c, 〈t〉 E Q and t /∈ CS(Q). Now t centralises

B ≤ CS(Q) and hence 〈B, t〉 is abelian. Moreover 〈B, t〉 is normal in CS(Q)Q = S. From (I) it follows

that 〈B, t〉 has rank 2 and then Ω1(〈B, t〉) = A by (II).

If B has an element u of order 4 that squares to c, then t and u are commuting elements of order 4 of

〈B, t〉 that square to c, so their product tu is an involution. In particular tu ∈ Ω1(〈B, t〉) = A ≤ B and

so t = (tu)u−1 ∈ B ≤ CS(Q). This is a contradiction. Thus c is not a square in B.
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If there is some b ∈ B of order 4 such that b2 = a, then bd ∈ BECS(S0) and (bbd)2 = b2(b2)d = aad = c.

So bbd is an element of order 4 in B that squares to c, which is impossible by the previous paragraph.

Hence B does not have any elements that square to a or c. A similar argument shows that B does not

have any elements that square to ac.

This implies that B = A and so A is a maximal abelian normal subgroup of CS(Q). We deduce from

5.1.7 of [17] that CS(A)∩CS(Q) = A. This forces CS(a)∩CS(Q) = A and hence 5.3.10 of [17] yields that

CS(Q) is dihedral or semi-dihedral. Together with the fact that AE CS(Q) it follows that CS(Q) = A

or CS(Q) ∼= D8. But d ∈ CS(Q) and hence CS(Q) ∼= D8.

Let A0 be a fours group in CS(Q) that is distinct from A. Then A0 E CS(Q) and [A0, Q] = 1 and

therefore A0 E S = CS(Q) ·Q, contrary to (II). This is our final contradiction. �

We let − : S〈x〉 → S〈x〉/Φ(S0) denote the natural epimorphism.

(IV) A = Z(S0) = Φ(S0) = S′0 = CS0
(x). In particular x̄ acts fixed-point-freely on S̄0.

Proof. Lemmas 2.1 (b) and 5.5 give that S0 6= 1. We intend to use Satz III 13.6 of [16] for the group

S0〈x〉. Therefore we take a characteristic subgroup B of S0 that is abelian. Now B is x-invariant because

S0 is. If B is cyclic, then x centralises it. Otherwise we note that S = NS(S0) normalises Ω1(B), which

is not cyclic, and then it follows from the uniqueness of A and (I) that Ω1(B) = A. Hence x centralises

Ω1(B) and then it centralises the abelian group B by Lemma 2.1 (g). As [[S0, x], x] = [S0, x] = S0 by

Lemma 2.1 (a), Satz III 13.6 of [16] gives that S0 is special. We conclude that Z(S0) = Φ(S0) = S′0 is

an elementary abelian normal subgroup of S. Thus (I) and (II) yield that Z(S0) = A or Z(S0) = 〈c〉.
In both cases Z(S0) ≤ CG(x).

Considering the action of x on the elementary abelian group S0, we see that [S0, x] = [S0, x] = S0 and

hence S0 ∩ CS0
(x̄) = 1. This implies that CS0

(x) = CS̄0
(x̄) = 1 by Lemma 2.1 (c). Hence CS0

(x) ≤
Φ(S0) = Z(S0) implies that CS0

(x) = Z(S0) = Φ(S0) = S′0 and that x̄ acts fixed-point-freely on S̄0.

Assume for a contradiction that Φ(S0) = Z(S0) = S′0 = CS0
(x) = 〈c〉. Then S0 is extra-special and

A � S0, as A ≤ C by (II). In particular S0 does not contain any normal fours subgroup of S. With

Lemma 1.4 of [6] we obtain that S0 is dihedral or quaternion of order 8. Since S0 admits an automorphism

of order 3 induced by x, we conclude that S0 E S is a quaternion group of order 8, contrary to Lemma

2.1 (a) and (III). �

(V) Let U ≤ S0 be CS(x)-invariant such that A ≤ U . Then U E S and we have that U = S0, U = A,

or U = [U, x]× 〈a〉 ∼= Q8 × C2 and CS(x) ≤ CS([U, x]). In particular |S̄0| = 16.

Proof. The group S̄0 = S0/Φ(S0) is elementary abelian. Part (I), the Four Generator Theorem of [18]

and Burnside’s Basis Theorem (see III 3.15 of [16]) yield that S0 has order at most 16.

Furthermore x̄ acts fixed-point-freely on S̄0 by (IV). Thus |Ū | − 1 is divisible by 3. This implies that

|Ū | ∈ {1, 4, 16}. If Ū = 1, then U = A. If |Ū | = 16, then U = S0.

If Ū has order 4, then |U | = 16 and U E S0 by (IV). Hence U E S0CS(x) = S by our assumption. It

follows from (I) that r(Z(U)) ≤ 2. Moreover A ≤ Z(U) by (IV) and so x centralises Ω1(Z(U)). Then

Lemma 2.1 (g) implies that x centralises Z(U). Since x acts fixed-point-freely on Ū by (IV), we deduce

that U is not abelian.

As U ′ ≤ A by (IV), we conclude that 1 6= U ′ ≤ A. Furthermore Proposition 1.6 of [6] implies that

|U : U ′| 6= 4, as A ≤ Z(U). Altogether U ′ is a cyclic characteristic subgroup of U E S. This implies,

together with (I), that U ′ = 〈c〉 ≤ C.

Lemma 2.1 (b) and (c) yield that U/U ′ = [U/U ′, x] × CU/U ′(x) = [U, x]/U ′ × CU (x)/U ′. We conclude

that U = [U, x]〈c〉 × 〈a〉 from CU (x) = 〈a, x〉, and that [U, x]〈c〉 is a non-abelian x-invariant subgroup
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of order 8 of U . Since [U, x] is not centralised by x, it follows that [U, x]〈c〉 = [U, x] ∼= Q8. Thus we have

that U = [U, x]× 〈a〉 ∼= Q8 × C2.

As U is CS(x)-invariant, we see that CS(x) ≤ NS([U, x]) ∩ C = [U, x]CS([U, x]) ∩ C = CS([U, x]) by

(III). Finally [U, x] � U and [S0, x] = S0 by Lemma 2.1 (a), and consequently U 6= S0. �

(VI) S = T .

Proof. We first notice that S ∩ M = T and CS(x) = CT (x). Moreover Lemma 2.1 (b) shows that

M ∩ S0 = [M ∩ S0, x] · (C ∩M ∩ S0) = [T, x] · CS0(x). This implies that M ∩ S0 is a CS(x)-invariant

subgroup of S0. As A ≤M ∩ S0 by (IV), it follows that M ∩ S0 is normal in S0 and that M ∩ S0 E S.

We may apply (V) and see that our assertion follows if |M ∩ S0| > 16.

If M ∩ S0 = [T, x] · 〈a〉 ∼= Q8 × 〈a〉, then 1 6= (M ∩ S0)′ is characteristic in M ∩ S0 and, therefore,

normal in S. Furthermore (M ∩ S0)′ = Z([T, x]) is normalised by P . Thus Lemma 6.4 (e) shows that

S ≤ NG(Z([T, x])) ≤M .

We assume for a contradiction that M ∩S0 = A = C∩S0. Then [T, x] = 1 and so S 6= T ≤ C contradicts

Lemma 6.5. �

(VII) CS(S0) = A.

Proof. As CS(S0) is x-invariant, Lemma 2.1 (b) and (IV) yield that

CS(S0) = (CS(S0) ∩ C)[CS(S0), x] = (CS(S0) ∩ C)(CS(S0) ∩ S0) = (CS(S0) ∩ C)A ≤ C.

Let t ∈ CS(S0) be such that t2 ∈ A. Then by (IV) the group S0〈t〉 is abelian and t2 ∈ A = Φ(S0). It

follows that S0〈t〉 is elementary abelian and so Φ(S0〈t〉) = Φ(S0). Then the Four Generator Theorem

of [18], Burnside’s Basis Theorem (see III 3.15 of [16]) and (V) imply that |S0〈t〉| ≤ 16 = |S̄0|. Thus

t ∈ S0 ∩ CS(S0) = A. This implies that A = CS(S0). �

(VIII) There is some y ∈ P \ 〈x〉 of order 3 that centralises S0 and there is some CS(x)-invariant

normal subgroup of S0 of order 16 containing A.

Proof. Let V be an elementary abelian subgroup of order 27 of P . Then (VI) implies that V normalises

[T, x] = S0 and so Φ(S0) = C ∩ S0. We conclude that the elementary abelian group S̄0 of order 16

is V -invariant. From |GL4(2)|3 = 32 it follows that |CV (S̄0)| 6= 3. Thus Lemma 2.1 (h) gives the first

assertion.

Considering the action of x̄ on S0 by conjugation, we see that there are five x̄-orbits. A straight forward

computation shows that every orbit generates a subgroup of order 4 of S0. In particular the five x̄-

invariant subgroups of S̄0 are permuted by CS(x). Since CS(x) is a 2-group, at least one of the five x-

invariant fours groups in S0 is normalised by CS(x). So its full pre-image is a CS(x)-invariant subgroup

of S0 of order 16 containing A. By (IV) we see that the full pre-image is normal in S0. �

(IX) There is an involution d ∈ CS(x) such that 〈d〉S0 = S.

Proof. According to (VIII) let E be a CS(x)-invariant normal subgroup of S0 such that A ≤ E and E has

order 16. Then (V) implies that E = [E, x]×〈a〉 ∼= Q8×〈a〉 and CS(x) ≤ CS([E, x]) ≤ NS([E, x]). Now

(III) and the fact that S = S0CS(x) show that NS0
([E, x]) is a proper CS(x)-invariant subgroup of S0.

As A ≤ E ≤ NS0
([E, x]), we deduce from (V) that E = NS0

([E, x]). In particular CS0
(E) = Z(E) = A

(**).

We set D := CCS(x)(E). Then A ≤ D ≤ CCS(x)(A), and from CS(x) ≤ CS([E, x]) and E = [E, x] ·A we

obtain that D = CCS(x)(A). It follows from Lemma 2.1 (b) that CS(E) = (CS(E)∩C)[CS(E), x] ≤ DS0.

Then Dedekind’s modular law (see 1.1.11 of [17]) and (**) imply that CS(E) = D(CS(E)∩S0) = DA =

D.
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As E is a normal subgroup of S, we see that S normalises first CS(E) = D and then CG(D). Now

x ∈ CG(D) and therefore S0 = [S, x] ≤ S ∩ CG(D) = CS(D), which together with (VII) yields that

D ≤ CS(S0) = A. This implies that D = A, i.e. CCS(x)(A) = D = A. Then it follows from Lemma

2.1 (b) that CS(A) = (CS(A) ∩ C)[CS(A), x] ≤ AS0 = S0 and so that CS(A) = S0 from (IV).

Finally |CS(x) : A| = |CS(x) : C ∩S0| = |S : S0| = |S : CS(A)| = 2 by (II). Thus CS(x) is a non-abelian

group of order 8 containing A. More precisely CS(x) is a dihedral group of order 8. This provides an

involution d ∈ CS(x) such that S = CS(x)S0 = 〈d〉AS0 = 〈d〉S0. �

As O2(G) = G, we obtain from Thompson’s Transfer Lemma (see 12.1.1 of [17]) an element g ∈ G such

that dg ∈ S0. Consequently y centralises dg by (VIII) and xg centralises dg. But y is not conjugate to

xg in G, because x is isolated in G. Thus CG(bg) has non-cyclic Sylow 3-subgroups and Lemma 6.4 (e)

yields that y ∈ CG(bg) ≤ Mg. Now g ∈ M by Part (b) of the same lemma and then d ∈ Sg−1

0 ≤
[x,M ]g

−1

= [x,C ·O3′(M)]g
−1

= [x,O3′(M)]g
−1 ≤ O3′(M)g

−1

= O3′(M) by Lemma 4.2 (a).

This implies that S = 〈d〉S0 ≤ O3′(M). In particular [v, b] ∈ O3′(M) for all 3-elements v ∈ M and all

2-elements b ∈M . This contradicts Lemma 5.2. �

Here is what we work with in the remainder of this section:

Hypothesis 7.2. In addition to Hypothesis 6.1, suppose the following:

(a) The centraliser of every involution of every section of G is soluble.

(b) r3(G) ≥ 3.

Corollary 7.3. Suppose that Hypothesis 7.2 holds. Then G has local characteristic 2.

Proof. We check the hypothesis of Theorem A of [27] with the prime 2. Theorem 7.1 shows that G is

connected for the prime 2. By Hypothesis 7.2 (a) we have that F ∗(CG(s)/O(CG(s))) is a 2-subgroup for

every involution s ∈ G. Finally r2(G) ≥ 3 by Theorem 4.4 (a). So the theorem yields that O(CG(s)) = 1

for every involution s ∈ G because, by Theorem 4.4 (b), G does not have a strongly embedded subgroup.

Then Hypothesis 7.2 (a) and 12.1.2 of [17] yield the assertion. �

In the next section we will analyse the structure of M in much more detail. A special case will be treated

now:

Lemma 7.4. Suppose that Hypothesis 7.2 holds and let M be a strongly 3-embedded subgroup of G

containing C. Then F ∗(M) = O2(M).

Proof. By Lemma 6.4 (c) there is a Sylow 2-subgroup S of M such that S0 := [S, x] is normalised by P

and SP ≤M .

(I) If R ≤ P is not cyclic, then r2(CG(R)) ≤ 1 or O(M) = 1.

Proof. Let A ≤ CG(R) be elementary abelian, but not cyclic. Then R ≤ CG(a) for all a ∈ A#. Since

CG(a) is soluble by Hypothesis 7.2 (a), we deduce from Lemma 6.4 (d) that CG(a) ≤M for all a ∈ A#.

Then for every a ∈ A# we have that CG(a)∩O(M) ≤ O(CG(a)) = 1, as G has local characteristic 2 by

Corollary 7.3. Finally, Lemma 2.1 (e) implies that O(M) = 〈CO(M)(a) | a ∈ A#〉 = 1. �

(II) E(M) = 1.

Proof. Assume for a contradiction that E(M) 6= 1. Then Hypothesis 7.2 (a) implies that E(M) is

simple and O2(M) = 1. Since x ∈ M and C is soluble by Hypothesis 6.1, we deduce from Lemma 2.5

that E(M) ∼= Sz(8). Moreover, P normalises E(M) and r3(G) ≥ 3 by Hypothesis 7.2 (b), so Lemma

2.4 (a) gives an elementary abelian subgroup W of P of order 9 that centralises E(M). Hence Lemma
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2.4 (b) implies that r2(CG(W )) ≥ 3. In particular (I) yields that O(M) = 1 and so F (M) = 1. But now

W ≤ CM (E(M)) = CM (F ∗(M)) ≤ F ∗(M) = E(M) ∼= Sz(8), which contradicts Lemma 2.4. �

We assume for a contradiction that O(M) 6= 1.

(III) Let T be a P -invariant 2-subgroup of M . Then Z(T ) is cyclic and [P,Z(T )] = 1.

Proof. Let V be an elementary abelian subgroup of P of order 27. Then the abelian group Z(T ) is

normalised by V and so Lemma 2.1 (d) yields that Z(T ) =
∏

W maxV CZ(T )(W ). Our assumption and

(I) imply that CZ(T )(W ) is cyclic for all W maxV . Then, as V normalises CZ(T )(W ), it follows that V

centralises CZ(T )(W ) for all W maxV . Altogether Z(T ) ≤ CG(V ) and so Z(T ) is cyclic. Since a cyclic

2-group does not admit an automorphism of order 3, we finally obtain that [P,Z(T )] = 1. �

(IV) O(M) = F (M) = F ∗(M).

Proof. Otherwise (II) implies that O2(M) 6= 1. Thus, by (III), there is an involution a ∈ Z(O2(M))

such that P ≤ CG(a). Then CG(a) ≤ M by Lemma 6.4 (e) and O(M) ≤ CG(O2(M)) ≤ CG(a). Then

Corollary 7.3 gives that O(M) ≤ O(CG(a)) = 1, which is a contradiction. �

(V) S is a Sylow 2-subgroup of G.

Proof. From Lemma 6.5 and Lemma 2.1 (b) we have that S0 = [S, x] 6= 1 and so 1 6= Z(S)∩S0 ≤ Z(S0).

Consequently Z(S) ∩ S0 is centralised by P by (III). In particular CG(Z(S)) ≤ CG(Z(S) ∩ S) ≤
M by Lemma 6.4 (e) and Z(S) ∩ S0 is centralised by x. Now Lemma 2.1 (b) shows that Z(S) =

[Z(S), x] · CZ(S)(x) ⊆ (Z(S) ∩ S0) · C ⊆ C and Lemma 4.2 (d) yields that NG(S) ⊆ NG(Z(S)) =

NC(Z(S)) · CG(Z(S)) ≤M . �

Let c ∈ Z(S0) be an involution.

(VI) If a ∈ S is an involution and a 6= c, then CP (a) = 1.

Proof. As S0 is a normal subgroup of S and Z(S0) is cyclic by (III), we see that c ∈ Ω1(Z(S0)) ≤ Z(S).

In addition P ≤ CG(c) by (III) and so Lemma 6.4 (e) yields that CG(c) ≤ M . Then it follows from

Corollary 7.3 that O(M) ∩ CG(c) ≤ O(CG(c)) = 1.

Let a ∈ S be an involution distinct from c. Assume for a contradiction that O(M) ∩ CG(a) = 1. Then

O(M) = 〈O(M) ∩ CG(a), O(M) ∩ CG(c), O(M) ∩ CG(ac)〉 ≤ CG(ac) by Lemma 2.1 (e). In particular

ac ∈ CG(O(M)) ≤ O(M) by (IV), which is a contradiction.

As S is a Sylow 2-subgroup of G by (V), there is some g ∈ G such that ag ∈ O2(CG(a))g ≤ S. Then

c ∈ Z(S) ⊆ CG(ag) ∩ CG(O2(CG(ag))). Moreover O2(CG(ag)) = F ∗(CG(ag)) by Corollary 7.3, so we

conclude that c ∈ O2(CG(ag)).

Now we see that [O(M) ∩ CG(ag), c] ≤ O(M) ∩O2(CG(ag)) = 1 and hence O(M) ∩ CG(ag) ≤ O(M) ∩
CG(c) = 1.

Thus we deduce that ag = c by the investigation above.

Assume for a contradiction that 1 6= CP (a). Then 1 6= CP (a) ≤ CG(a) ≤ Mg. But M is strongly

3-embedded. This implies that g ∈ M . Therefore CG(a) ∩ O(M) = CG(cg
−1

) ∩ O(M) = (CG(c) ∩
O(M))g

−1

= 1, which is false. �

We now work towards a final contradiction.

Let A ≤ S be elementary abelian of order 4 and such that c /∈ A. This choice is possible by Theorem

4.4 (a).

Then Lemma 2.1 (e) and (VI) imply thatO3(PS) = 〈CG(a)∩O3(PS) | a ∈ A#〉 ≤ 〈CP (a) | a ∈ A#〉 = 1.

Let V ≤ P be elementary abelian of order 27 and set U := O2(PS). Again Lemma 2.1 (e) yields that
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U = 〈CU (v) | v ∈ V #〉. Let v ∈ V # be such that CU (v) has maximal order. Then it follows from (VI)

that r(CU (v)) ≤ 1 and so CU (v) is cyclic or a quaternion group. Moreover CU (v) is normalised by V .

As cyclic 2-groups and quaternion groups do not admit a non-cyclic 3-group of automorphisms, V has a

maximal subgroup W that centralises CU (v). In particular CU (v) ≤ CU (w) for all w ∈W#. The choice

of v implies that CU (v) = CU (w) for all w ∈ W# and hence U = 〈CU (w) | w ∈ W#〉 = CU (v). This

gives the contradiction v ∈ CPS(U) = CPS(F ∗(PS)) ≤ F ∗(PS) = U .

Now O(M) = 1, and together with (II) the statement follows. �

8. The structure of M

In [20] and [26] it becomes apparent that the connection between the 2-structure and the 3-structure is

crucial in the analysis of a minimal counterexample. Therefore one of our main ideas is to prove that

M contains a Sylow 2-subgroup of G. The way we approach this is very much inspired by Thompson’s

work on N -groups, see [24] and in particular [25].

Definition 8.1. Let U EM ≤ G. Then U is p-reduced (in M) if and only if Op(M/CM (U)) = 1.

Hypothesis 8.2. Suppose that Hypothesis 7.2 holds.

We use the following notation:

Let M be a strongly 3-embedded subgroup that contains C and let T ∈ Syl2(M) be such that PT = TP .

Moreover we set R(M) := 〈U ≤ M | U E M and U is 2-reduced in M〉 and B := Ω1(R(M)), and

whenever H ≤ G, then I∗(H) := {h ∈ H | o(h) = 2 and CG(h) ≤ H}. We let − : M → M/CM (B)

denote the natural epimorphism.

Finally T0 := 〈Bg | g ∈ G and Bg ≤ T 〉.

Remark 8.3. The notation makes sense in light of Lemma 6.3 and Lemma 6.4 (c).

The factor group M̄ acts on B via bḡ := bg for all b ∈ B and ḡ ∈ M̄ . In particular CB(ḡ) = CB(g) and

[B, ḡ] = [B, g] for all g ∈ M . In the following we therefore do not distinguish between a calculation in

M and a calculation in B o M̄ .

Lemma 8.4. Suppose that Hypothesis 8.2 holds. Then the following is true:

(a) R(M) and B are abelian 2-reduced subgroups of M and NG(B) = M .

(b) F (M̄) has odd order.

(c) If x ∈ CM (B), then M is soluble.

(d) If A is an elementary abelian normal 2-subgroup of M that is 2-reduced in M , then A ≤ B.

(e) Suppose that A is an elementary abelian 2-subgroup of G such that for some g ∈ G the group

CMg (A) has non-cyclic Sylow 3-subgroups. Then A# ⊆ I∗(Mg).

(f) If CP (B) is not cyclic, then B# ⊆ I∗(M).

(g) C̄ = CM̄ (x̄).

Proof. For (a) we apply Lemma 5.9 of [24]. Since O2(M) 6= 1, the lemma says that R(M) is a non-trivial,

abelian and 2-reduced subgroup of M . Hence B = Ω1(R(M)) is non-trivial and abelian. Lemma 2.1 (g)

implies that B is also 2-reduced. Moreover R(M) is generated by normal 2-subgroups of M , so both

R(M) and B are normal 2-subgroups of M . Since M is a maximal subgroup of G by Lemma 6.4 (b),

we deduce from Lemma 4.3 that NG(B) = M .

Then (b) follows from (a) and the definition of 2-reducibility.
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We turn to (c) and suppose that x ∈ CM (B). We note that CM (B) EM and that CM (B) is soluble

by Hypothesis 7.2 (a). Lemma 3.4 (c) implies that M = CM (B) · C and then M̄ = C̄ is soluble by

Hypothesis 6.1. As CM (B) is also soluble, the assertion follows.

Let A be an elementary abelian normal 2-subgroup of M that is 2-reduced in M . Then A ≤ R(M) by

the definition of R(M) and, as A is elementary abelian, we see that A ≤ Ω1(R(M)) = B. This is (d).

For (e) we let R ∈ Syl3(CMg (A)). Then by Sylow’s Theorem there is some h ∈Mg such that Rh ≤ P g.

Let a ∈ A#. Then Rh ≤ CG(ah) and we know that CG(a) is soluble by Hypothesis 7.2 (a). Therefore

CG(a)h is soluble. We apply Lemma 6.4 (d) to P g and Mg and deduce that CG(a)h ≤Mg. This implies

that CG(a) ≤Mg because h ∈Mg. In addition, (f) is a consequence of (e).

Finally for (g) we observe that C̄ ≤ CM̄ (x̄). Let c̄ ∈ CM̄ (x̄) and let c ∈ M be a pre-image of c̄. Then

xc ∈ 〈x〉CM (B) and Sylow’s Theorem provides some d ∈ CM (B) such that xcd ∈ 〈x〉CP (B). As x is

isolated in G, Lemma 3.3 shows that cd ∈ C and so c̄ = cd ∈ C̄. �

Lemma 8.5. Suppose that Hypothesis 8.2 holds, that ȳ ∈ P̄ is such that ȳ3 = 1, that b ∈ M is an

involution and ȳb̄ = ȳ−1. If [B, ȳ] has order 4, then [B, ȳ]# ⊆ I∗(M).

Proof. We set D := [B, ȳ]. If CM (D) has non-cyclic Sylow 3-subgroups, then Lemma 8.4 (e) yields the

assertion. We assume for a contradiction that CM (D) has cyclic Sylow 3-subgroups.

From Lemma 3.4 (d) we see that ȳ 6= x̄. Let y ∈ P be a pre-image of ȳ of minimal order and let

H := CM (B)〈y, b〉. Then S3
∼= H/CM (B). Now let R ∈Syl3(CM (B)) be such that 〈y〉R ∈Syl3(H).

Then R is cyclic by assumption and y /∈ R, so if 〈y〉R is cyclic, then R = 1 and o(y) = 3. If 〈y〉R is not

cyclic, then Theorem 1.2 (a) of [6] and our choice of y as a pre-image of ȳ of minimal order gives that

o(y) = 3.

We know that B EM by Lemma 8.4 (a), and together with Lemma 6.4 (a) we deduce that NG(〈y〉) =

NM (〈y〉) ≤ NM ([B, y]) = NM (D). Moreover D has order 4 and so NM (D)/CM (D) is isomorphic to a

subgroup of S3. This implies that the Sylow 3-subgroups of NG(〈y〉) have a maximal subgroup that is

cyclic. Let R0 ∈ Syl3(NG(〈y〉) be such that x ∈ CP (y) ≤ R0. Then Theorem 1.2 (a) of [6] shows that

Ω1(R0) = 〈x, y〉. We recall that r(P ) ≥ 3 and that P is connected by Hypothesis 7.2 and Lemma 6.2. So

we find an elementary abelian non-cyclic subgroup W of P different from 〈x, y〉 such that [〈x, y〉,W ] = 1.

In particular W ≤ CP (y) and so W ≤ Ω1(CP (y)) = 〈x, y〉, which is a contradiction. �

Lemma 8.6. Suppose that Hypothesis 8.2 holds, that V is an elementary abelian subgroup of order 27

of M and that D ≤ B is not cyclic and V -invariant. Then the following is true:

(a) For all maximal subgroups W of V the group C[D,V ](W ) is trivial or of order at least 4.

(b) There exists a non-cyclic subgroup A ≤ D such that all involutions in A lie in I∗(M).

(c) If B0 is a maximal subgroup of D, then CG(B0) ≤M . In particular CG(D) ≤M .

Proof. By Lemma 2.1 (b) we know that D = CD(V )× [V,D]. As V is abelian, we deduce for all maximal

subgroups W of V that C[D,V ](W ) is normalised, but not centralised by all v ∈ V \W . A cyclic 2-group

does not admit an automorphism of order 3 and therefore (a) is true. Moreover there is some W maxV

such that C[D,V ](W ) has order at least 4, or otherwise D = CD(V ). In both cases we find a maximal

subgroup W of V such that CD(W ) is not cyclic. We keep this subgroup W and notice that |CD(W )| ≥ 4.

Using Lemma 8.4 (e), we see that all involutions of CD(W ) are contained in I∗(M), which is (b).

If B0 ≤ D is a maximal subgroup, then CB0(W ) = B0 ∩ CD(W ) 6= 1 because |CD(W )| ≥ 4 and

|D : B0| = 2. If b ∈ CB0
(W ) is an involution, then as above it follows that CG(b) ≤ M and therefore

CG(B0) ≤M . As CG(D) ≤ CG(B0), we obtain (c). �
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Lemma 8.7. If |B| ≥ 8 and B0 is a subgroup of B of index at most 4, then CG(B0) ≤M .

Proof. We assume for a contradiction that there is some subgroup B0 of B of index at most 4 such

that CG(B0) �M . Hypothesis 7.2 (b) gives an elementary abelian subgroup V of P that has order 27.

Hence, as P ≤M , we deduce from Lemma 8.6 (c) that |B : B0| = 4.

Let W be a maximal subgroup of W . If |CB(W )| ≥ 8, then B0 ∩ CB(W ) 6= 1 and so we see that

CG(B0) ≤ CG(B0 ∩ CB(W )) ≤ M , because Lemma 8.4 (e) yields that CB(W )# ⊆ I∗(M). This is a

contradiction. Thus 8.6 (a) implies that C[B,V ](W ) = 1 or that |C[B,V ](W )| = 4 and CB(V ) = 1.

Lemma 2.1 (d) shows that B = 〈CB(W ) | W maxV 〉. From |B| ≥ 8 and the investigation above, we

obtain maximal subgroups W1 6= W2 of V such that B1 := C[B,V ](W1) and B2 := C[B,V ](W2) have order

4. As C[B,V ](V ) = 1 by Lemma 2.1 (b), it follows that B1B2 = B1 × B2 is an V -invariant subgroup of

order 16. Let wi ∈Wi \W3−i for all i ∈ {1, 2}. Then wi centralises Bi and acts non-trivially on B3−i. In

particular B3−i〈wi〉 ∼= A4 and B1B2〈w1, w2〉 ∼= A4 ×A4. We recall that |B1B2| = 16 and |B : B0| = 4

and we see that D := B0 ∩ (B1B2) has order at least 4, and since B0 ∩ B1 = 1 and |B1| = 4, we also

have that |D| = 4.

We apply Lemma 5.31 of [24]. If i ∈ {1, 2}, then Bi ∩ D ≤ CB(Wi) ∩ B0 = 1, so we find an element

w ∈ 〈w1, w2〉 of order 3 that normalises D. Now 〈w〉(W1∩W2) is an elementary abelian subgroup of order

9 of NG(B) and so Lemma 6.4 (e) implies that NG(D) ≤ M . Altogether we obtain the contradiction

CG(B0) ≤ CG(D) ≤ NG(D) ≤M . �

Lemma 8.8. Suppose that Hypothesis 8.2 holds and let Ā be an elementary abelian 2-subgroup of M̄ .

(a) If Ū ≤ CĀ(O3(M̄)), then |B : CB(Ū)| ≥ |Ū |2 and |[B, Ū ]| ≥ |Ū |2.

(b) There is a subgroup Ā1 of Ā such that Ā = Ā1×CĀ(O3(M̄)) and there exist some integer k ≥ 0

and elements ā1, ..., āk ∈ Ā1, ȳ1, ..., ȳk ∈ O3(M̄) of order 3 such that for all i ∈ {1, ..., k} we

have: 〈ȳi, āi〉 ∼= S3 and 〈ȳ1, ..., ȳk〉Ā1 =
k

×
i=1
〈ȳi, āi〉.

(c) If E(M̄) = 1, then there exist some integer l ≥ 0 and elements d̄1, ..., d̄l ∈ Ā such that for

every i ∈ {1, ..., l} there is an odd prime qi and an element ḡi of order qi of F (M̄) such that d̄i

inverts ḡi and 〈ḡ1, ..., ḡl〉Ā =
l

×
i=1
〈ḡi, d̄i〉.

Proof. We first remark that F (M̄) has odd order by Lemma 8.4 (b).

We set K̄ := O3′(F
∗(M̄)) ·CĀ(O3(M̄)). Since M is 3-soluble by Lemma 6.4 (b), the group CĀ(O3(M̄))

acts faithfully on O3′(F
∗(M̄)). This implies that O2(K̄) = 1 and that K̄ is a 3′-group, so we may apply

Theorem A of [13] to K̄ and deduce that (a) holds.

In addition let Ā1 be a complement of CĀ(O3(M̄)) in Ā. Then Ā1 acts faithfully on O3(M̄) and if

E(M̄) = 1, then Ā acts faithfully on F (M̄). Thus (b) and (c) follow from Thompson’s Dihedral Lemma

(see for example Lemma 24.1 in [14]). �

Lemma 8.9. Suppose that Hypothesis 8.2 holds. If B0 is a maximal subgroup of B and b ∈ M is

an involution such that CB(b) = B0, then [B, b] has order 2 and CM ([B, b]) has non-cyclic Sylow 3-

subgroups. In particular [B, b]# ⊆ I∗(M).

Proof. As CB(b) = B0 6= B, we see that b̄ 6= 1, and then 8.4.1 of [17] implies that [B, b] has order 2.

We apply Lemma 8.8 to the elementary abelian 2-group 〈b̄〉. If b̄ centralises O3(M̄), then Part (a)

of the lemma implies that 2 = |B : CB(b̄)| ≥ |〈b̄〉|2 = 22, which is false. So there is some element

ȳ ∈ O3(M̄) of order 3 that is inverted by b̄. Then Lemma 2.1 (b) yields that B = [B, ȳ]×CB(ȳ) and so

2 = |B : CB(b)| ≥ |[B, ȳ] : C[B,ȳ](b)|. Moreover we see from Lemma 2.2 (d) that
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|C[B,ȳ](b)|2 = |[B, ȳ]| = |C[B,ȳ](b)| · |[B, ȳ] : C[B,ȳ](b)| ≤ |C[B,ȳ](b)| · 2.
We conclude that |C[B,ȳ](b)| ≤ 2 and so |[B, ȳ]| ≤ 4. Since ȳ has order 3 and acts non-trivially on B, it

follows that [B, ȳ] has order 4. Then Lemma 8.5 yields that [B, y]# ⊆ I∗(M).

Furthermore 2 = |[B, ȳ] : C[B,ȳ](b)| and hence 1 6= [[B, ȳ], b̄] ≤ [B, b̄] ∩ [B, ȳ]. As [B, b] has order 2, we

deduce that [B, b] = [B, b̄] ≤ [B, ȳ]. Altogether it follows that [B, b]# ⊆ [B, y]# ⊆ I∗(M). �

Lemma 8.10. Suppose that Hypothesis 8.2 holds and let g ∈ G be such that [B,Bg] ≤ B ∩Bg.

Then [B,Bg] = 1.

Proof. Assume for a contradiction that [B,Bg] 6= 1. Then by hypothesis 1 6= [B,Bg] ≤ B∩Bg. Therefore

B ≤ NG(Bg) = Mg and also Bg ≤ NG(B) = M by Lemma 8.4 (a).By symmetry we may suppose that

|B : CB(Bg)| ≤ |Bg : CBg (B)| 6= 1.

We set B̄2 := CB̄g (O3(M̄)). Then Lemma 8.8 (a) implies that |B̄2|2 ≤ |B : CB(B̄2)| ≤ |B : CB(B̄g)| =
|B : CB(Bg)| ≤ |Bg : CBg (B)| = |B̄g|. This shows that B̄2 6= B̄g.

We apply Part (b) of Lemma 8.8 to obtain a non-trivial subgroup B̄1 of B̄g and an integer k ≥ 1 such

that B̄g = B̄1×CB̄g (O3(M̄)) and |B̄1| = 2k. Moreover there are ȳ1, ..., ȳk ≤ O3(M̄) of order 3 and such

that 〈ȳ1, ..., ȳk〉 · B̄1 is a direct product of groups isomorphic to S3.

For all i ∈ {1, .., k} we see that Di := [B, ȳi] is non-trivial because ȳi 6= 1. Additionally ȳi centralises

B̄2 = CB̄g (O3(M̄)) and a maximal subgroup of B̄1. We set Āi := CB̄g (ȳi) and let Ai denote the full

pre-image of Āi in Bg. Then Ai is a maximal subgroup of Bg for every i ∈ {1, .., k}.
Now we fix some i ∈ {1, .., k}. By Lemma 2.3 the yi-invariant group Di is not centralised by Bg. In

particular there is an element di ∈ Di \CDi(B
g). We further notice that [B, B̄g] = [B,Bg] ≤ B∩Bg and

that Bg is abelian, so it follows that B̄g acts quadratically on B. Thus [di, Ai] ≤ [Di, Ai] = [Di, Āi] = 1

by Lemma 2.3. This implies that Ai = CBg (di) = CBg (Di) and Lemma 8.9 yields that ∅ 6= [Bg, di]
# ⊆

I∗(Mg) and that CMg ([Bg, di]) has non-cyclic Sylow 3-subgroups.

Assume for a contradiction that there is some j ∈ {1, ..., k}\{i}. Then Lemma 8.8 (b) provides an element

āj of Āi that inverts ȳj . Moreover [〈ȳj〉, B̄g] = 〈ȳj〉 and ȳj ∈ CM̄ (ȳi). This implies that Di = [B, ȳi] is

ȳj-invariant. As Di ≤ CB(Āi) ≤ CB(āj), Lemma 2.3 yields that [Di, ȳj ] = 1. In particular [di, ȳj ] = 1.

We apply the Three Subgroups Lemma (see 1.5.6 of [17]). From [[di, 〈ȳj〉], B̄g] = 1 and [di, [〈ȳj〉, B̄g]] =

[di, 〈ȳj〉] = 1 it follows that [Bg, di] = [di, B̄
g] is centralised by 〈ȳj〉. Let y be a pre-image of ȳj in M .

As ȳ3
j = 1, we may choose y as a 3-element. Then y ∈ CG([Bg, di]) ∩M ≤ Mg ∩M and it follows that

g ∈M , as M is strongly 3-embedded. Now, Lemma 8.4 (a) implies the contradiction Bg = B.

This shows that k = 1 and |B̄1| = 2k = 2. Moreover B̄2 = Ā1 and therefore D1 ≤ CB(Ā1) = CB(B̄2).

As D1 � CB(Bg) = CB(B̄g), we deduce that CB(B̄2) 6= CB(B̄g).

We recall that B̄2 = CB̄g (O3(M̄)) and apply Lemma 8.8 (d) once more to see that

2 · |B̄2| = |B̄1| · |B̄2| = |B̄g| = |B : CB(B̄g)|  |B : CB(B̄2)| ≥ |B̄2|2
and hence B̄2 = 1. Altogether we have proven that 2 = |B̄g| = |Bg : CBg (B)| ≥ |B : CB(Bg)| 6= 1. This

implies that 2 = |Bg : CBg (B)| = |B : CB(Bg)| and the situation is symmetric in B and Bg.

Consequently we find some d ∈ Bg such that 1 6= [B, d]# ⊆ I∗(M). We recall that 2 = |Bg : CBg (B)|,
whence Bg = 〈d〉CBg (B). It follows that [B,Bg] = [B, d] and by a similar argument that [B,Bg] =

[Bg, d1].

Finally CG([Bg, d1]) = CG([B, d]) ≤M , but CMg ([Bg, di]) has non-cyclic Sylow 3-subgroups. Since M is

strongly 3-embedded it follows that g ∈M and so Bg = B by Lemma 8.4 (a). This is a contradiction. �

Lemma 8.11. Suppose that Hypothesis 8.2 holds and that E(M̄) 6= 1. Then we have that |B| ≥ 212.

If in addition g ∈ G is such that |Bg : Bg ∩M | ≤ 2, then [B,Bg] = 1.
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Proof. If x ∈ CM (B), then M is soluble by Lemma 8.4 (c), contrary to our hypothesis. Therefore x̄ 6= 1.

In addition Hypothesis 7.2 (a) implies that E(M̄) simple. We recall that M is 3-soluble by Lemma

6.4 (b), so E(M̄) is a 3′-group. As C̄ = CM̄ (x̄) is soluble by Lemma 8.4 (g) and Hypothesis 6.1, Lemma

2.5 implies that E(M̄) ∼=Sz(8) is normalised by x̄ and that x̄ induces non-trivial automorphisms on

E(M̄).

Additionally Hypothesis 7.2 (b) provides an elementary abelian 3-subgroup V of order 27 of P such

that x ∈ V . Now we may apply Lemma 2.6 to the semi-direct product E(M̄)o V̄ acting on B. Part (a)

implies that |B| ≥ 212.

Moreover, from Lemma 2.4 (a) and Hypothesis 7.2 (a) we deduce that |M̄ : E(M̄)| is odd.

We now prove the following statement:

(*) If g ∈ G is such that |Bg : Bg ∩M | ≤ 2, then B ≤Mg.

Proof. Part (c) of Lemma 2.6 provides a subgroup B0 of B of order 16 and with the property that B0 is

centralised by some non-cyclic 3-subgroup of M . Thus B#
0 ⊆ I∗(M) by Lemma 8.4 (e). If Bg

0∩CBg (B) 6=
1, then it follows that B ≤ CG(CBg (B)) ≤ CG(Bg

0 ∩ CBg (B)) ≤Mg.

So we may assume for a contradiction that Bg
0 ∩ CBg (B) = 1. In particular |Bg : CBg (B)| ≥ |B0| = 24.

We set A := Bg ∩M . Then, as |M̄ : E(M̄)| is odd, we see that Ā ≤ E(M̄) ∼= Sz(8). In particular,

|Ā| ≤ 23 by Lemma 2.4 (b). Now 24 ≥ |Bg : CBg (B)| = |Bg : A| · |Ā| implies that |Ā| = 23 and Bg 6= A.

Then Ā = Ω1(S̄0) for some Sylow 2-subgroup S̄0 of E(M̄) by Lemma 2.4 (b).

Again V̄ acts coprimely on E(M̄) and hence Lemma 2.1 (f) implies that V̄ normalises a Sylow 2-subgroup

of E(M̄). By Sylow’s Theorem we may suppose that S̄0 is V̄ -invariant. In particular Ā = Ω1(Ā) is also

V̄ -invariant.

Then D := CB(Ā) = CB(A) is V -invariant and Lemma 8.6 (c) implies that CG(D) ≤ M . Moreover

Lemma 8.7, applied to the maximal subgroup A of Bg, yields that D ≤ CG(A) ≤Mg.

Since |M̄ : E(M̄)| and so |Mg/CG(Bg) : E(Mg/CG(Bg))| is odd, we obtain that DCG(Bg)/CG(Bg) ≤
E(Mg/CG(Bg)) ∼= Sz(8). Furthermore, Part (b) of Lemma 2.6 yields that D ≤ CG(Bg), because every

element of D centralises at least the maximal subgroup A of Bg.

Consequently we obtain the contradiction Bg ⊆ CG(D) ≤M , as |Bg : Bg ∩M | = |Bg : A| 6= 1. �

Finally let g ∈ G be such that |Bg : Bg ∩ M | ≤ 2. Then (*) gives that B ≤ Mg and so |Bg−1

:

Bg−1 ∩M | = |B : B ∩Mg| = 1 ≤ 2. Again (*) implies that B ≤ Mg−1

. In particular, Bg ≤ M and so

[B,Bg] ≤ B ∩Bg. It follows that [B,Bg] = 1 by Lemma 8.10. �

Lemma 8.12. Suppose that Hypothesis 8.2 holds. If g ∈ G is such that Bg ≤ M , then [B,Bg] = 1. In

particular B ≤ Z(T0).

Proof. Assume for a contradiction that there is some g ∈ G such that Bg ≤ M and [Bg, B] 6= 1. Then

Lemma 8.11 yields that E(M̄) = 1. In addition B is not cyclic and by Sylow’s Theorem we may suppose

that Bg ≤ T .

We deduce from Lemma 8.10 that B does not normalise Bg, and then we apply Lemma 8.8 (c) to

Ā := B̄g. It provides an element d̄1 ∈ Ā and an element ḡ1 ∈ M̄ of odd order that is inverted by d̄1 and

that centralises a complement Ā1 of 〈d̄1〉 in Ā.

Let A1 be the full pre-image of Ā1 in Bg. Then |Bg : A1| = |B̄g : Ā1| = |〈d̄1〉| = 2. In addition [B, ḡ1] is

invariant under CB̄g (ḡ1) = Ā1. We set B1 := C[B,ḡ1](A1). Then ḡ1 normalises B1 and B1 6= 1, since A1

and [B, ḡ1] are 2-groups. Now Lemma 2.3 shows that CB1
(ḡ1) ≤ C[B,ḡ1](ḡi) = 1 and that B1 � CB(d̄1).

In particular [Bg, B1] ≥ [d̄, B1] 6= 1.
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Lemma 8.7 yields that CG(A1) ≤Mg, because A1 is a maximal subgroup of Bg. Let b1 ∈ B1 \CM (Bg).

Then b1 ∈ CG(A1) ≤Mg and CBg (b1) = A1 is a maximal subgroup of Bg. Therefore, Lemma 8.9 implies

that CG([Bg, b1]) ≤Mg. As [Bg, b1] ≤ B and B is abelian, we obtain the contradiction B ≤Mg. �

Lemma 8.13. Suppose that Hypothesis 8.2 holds. If U ≤ G is such that T ∈ Syl2(U) and T0 ≤ N EU ,

then U = N ·NU (T0). In particular M = CG(B) ·NM (T0). Moreover one of the following is true:

(a) CP (B) is not cyclic and B# ⊆ I∗(M).

(b) M is the unique maximal subgroup that contains NG(T0).

Proof. We recall that T0 := 〈Bg | g ∈ G and Bg ≤ T 〉. First let U ≤ G be such that T ∈ Syl2(U) and

T0 ≤ N EU . Then a Frattini argument shows that U = N ·NU (N ∩ T ). Let h ∈ NU (N ∩ T ) and g ∈ G
be such that Bg ≤ T . Then Bg ≤ T0 ≤ N ∩ T and so Bgh ≤ N ∩ T ≤ T . The definition of T0 yields

that Bgh ≤ T0. It follows that NU (N ∩ T ) normalises T0 and then U = N ·NU (T0).

By Lemma 8.12 we see that T0 centralises B and so T0 ≤ CT (B). Therefore M = CG(B) ·NM (T0).

If CP (B) is not cyclic, then (a) holds by Lemma 8.4 (f).

If CP (B) is cyclic, then we recall that CP (B)E P and therefore NP (T0) is not cyclic because r(P ) ≥ 3

by Hypothesis 7.2 (b). Then we note that x ∈ NM (CT (B)) ≤ NG(T0), so Lemma 6.4 (e) implies that

M is the unique maximal subgroup of G containing NG(T0). This is (b). �

Corollary 8.14. Suppose that Hypothesis 8.2 holds. Then NG(T ) ≤M , which means that T is a Sylow

2-subgroup of G.

Proof. We first notice that M/CM (Ω1(Z(T ))) is a 2′-group. Hence Ω1(Z(T )) ≤ B by Lemma 8.4 (d). If

Lemma 8.13 (a) holds, then CP (Ω1(Z(T ))) ≤ NP (Ω1(Z(T ))) is not cyclic. We recall that Ω1(Z(T )) is

x-invariant by Hypothesis 8.2. So Lemma 6.4 (e) shows that NG(T ) ≤ NG(Ω1(Z(T ))) ≤M as stated.

If Lemma 8.13 (b) holds, then NG(T ) ≤ NG(T0) ≤M by definition of T0. �

9. A uniqueness result

Lemma 9.1. Suppose that Hypothesis 8.2 holds and that A is an elementary abelian subgroup of M

of order 4. Suppose that A ∼= Ā and that CB(A) has index at most 4 in B. Then for each element

b ∈ B \ CB(A) there is an element a ∈ A such that CG([b, a]) ≤M .

Proof. Let Ā1 be as in Lemma 8.8 (b) and set Ā2 := CĀ(O3(M̄)). Then Part (a) of the lemma and

our hypotheses imply that |Ā2|2 ≤ |B : CB(Ā2)| ≤ |B : CB(Ā)| = |B : CB(A)| ≤ 4. We conclude that

|Ā2| ≤ 2 and therefore Ā1 6= 1, because |Ā| = |A| = 4. Furthermore we see that CB(Ā2) = CB(Ā), if

Ā2 6= 1.

Now let ā1 ∈ Ā1 be an involution and let ȳ1 ∈ O3(M̄) be of order 3 such that ā1 inverts ȳ1, as in

Lemma 8.8 (b). If Ā2 6= 1, then we let ā2 ∈ Ā#
2 , and otherwise we refer to Lemma 8.8 (b) again and let

ȳ2 ∈ O3(M̄) be of order 3 and ā2 ∈ Ā1 be of order 2 such that ā2 inverts ȳ1 and Ā1 = 〈ā1〉 × 〈ā2〉. In

both cases [ā2, ȳ1] = 1.

Let D1 := [B, ȳ1]. Then CD1(ȳ1) = 1, but 1 6= CD1(ā2) is ȳ1-invariant and therefore Lemma 2.3 tells us

that it is not centralised by ā1. This shows that CD1
(ā2) � CB(A). In particular CB(ā2) 6= CB(A) and

we conclude that Ā2 = 1.

Furthermore for all i ∈ {1, 2}, it is true that CB(A) 6= CB(āi). From CB(A) = CB(Ā) ≤ CB(āi),

|B : CB(A)| ≤ 4 and 1 6= āi, it follows that CB(āi) is a maximal subgroup of B. We apply Lemma 8.9

to see that [B, ai]
# ⊆ I∗(M) for all i ∈ {1, 2}.

Finally let b ∈ B \ CB(A). Then there is some i ∈ {1, 2} such that 1 6= [b, ai] ∈ I∗(M). �
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Lemma 9.2. Suppose that Hypothesis 8.2 holds and that |B| ≥ 8. If g ∈ G and |Bg : Bg ∩M | ≤ 2,

then [B,Bg] = 1.

Proof. Assume for a contradiction that g ∈ G is such that [B,Bg] 6= 1 and |Bg : Bg ∩M | ≤ 2. Then

Lemmas 8.11 and 8.12 imply that E(M̄) = 1 and that Bg �M , so |Bg : Bg∩M | = 2. As |Bg| = |B| ≥ 8,

we know that |Bg ∩M | ≥ 4. We set A := Bg ∩M and A0 := CBg (B) = CA(B) (see Lemma 8.4 (a)).

(I) B �Mg, |Ā| ≥ 4 and A0 ∩ I∗(Mg) = ∅.

Proof. First, assume for a contradiction that B ≤Mg. Then B ≤ T g
0 and Lemma 8.12, applied to Bg,

yields that Bg ≤ Z(T g
0 ) ≤ CG(B). This gives the contradiction Bg ≤ CG(B) ≤ NG(B) = M , by Lemma

8.4 (a).

Now assume that |Ā| ≤ 2. We note that Ā ∼= A/A0 and therefore |A : A0| ≤ 2. Then 1 6= A0 has index

at most 4 in Bg and we apply Lemma 8.7 to Bg and Mg. It yields the contradiction B ≤ CG(A0) ≤Mg.

If a ∈ A0 ∩ I∗(Mg) is an involution, then B ≤ CG(A0) ≤ CG(a) ≤Mg, which is another contradiction.

�

Let k ∈ N be such that 2k = |Ā| ≥ 4 and, with Lemma 8.8, let a1, ..., ak ∈ A and for all i ∈ {1, ..., k}
let ȳi ∈ F (M̄) be of odd prime order qi and such that āi ∈ Ā inverts ȳi. In addition [ȳi, āj ] = 1 for all

j ∈ {1, ..., k} \ {i} and ĀE ≤ CM̄ (F (M̄)).

We fix i ∈ {1, ..., k}, we let Ai denote the full pre-image of CĀ(ȳi) in A and set Di := [B, ȳi] and

Bi := CDi(Āi), and we keep all this notation for the remainder of the proof.

(II) CG(Ai) ≤ Mg, qi = 3, |Bi| = 4 and ȳi acts transitively on Bi. Moreover there is some involution

bi ∈ Di \ I∗(M) such that 〈bi〉 = CDi
(A) = [Bi, ai] ≤ B ∩Bg ∩ [Bi, A].

Proof. First we note that A = Ai × 〈ai〉 and so Ai is a maximal subgroup of A. Then CG(Ai) ≤ Mg

by Lemma 8.7. Next we see that Di 6= 1, because ȳi 6= 1. Since Di and Ai are 2-groups, it follows that

Bi 6= 1. Then Ai ≤ CG(Bi) and A = Ai × 〈ai〉, so we see that CBi
(A) = CBi

(ai). Moreover Lemma 2.3

implies that āi, and hence ai, does not centralise the ȳi-invariant group Bi.

Let E be a complement of CBi(ai) in Bi. Then E ≤ Bi ≤ CG(Ai) ≤ Mg, as we have seen above, and

thus CG(Bg) ∩ E ≤ CG(ai) ∩ E = 1. Assume for a contradiction that |E| ≥ 4. Then we may apply

Lemma 9.1 to a fours group E0 in E and we obtain, for every a ∈ A \ Ai, some b ∈ E0 such that

CG([a, b]) ≤ Mg. For such elements b and a of G we see that [a, b] ∈ [A,E] ≤ [M,B] ≤ B and then

B ≤ CG([a, b]) ≤Mg, because B is abelian. This contradicts the first statement of (I).

We conclude that |Bi : CBi
(ai)| = |E| = 2. Thus Lemma 2.2 (a) yields that qi divides 22·1 − 1 = 3.

Then qi = 3. Moreover Part (d) of the same lemma gives that

|CBi
(ai)|2 = |Bi| = |Bi : CBi

(ai)| · |CBi
(ai)| = 2 · |CBi

(ai)|.

Altogether we have that |CBi(ai)| = 2 and so |Bi| = |CBi(ai)|2 = 4. The group Bi = CDi(Āi) is ȳi-

invariant, as [Āi, ȳi] = 1. Since ȳi acts fixed-point freely on Di by Lemma 2.1 (b), we see that ȳi acts

transitively on Bi.

Now 1 6= [Bi, ai] ≤ CBi
(ai) is cyclic and hence

[Bi, ai] = CBi(ai) = CDi(ai) ∩Bi = CDi(ai) ∩ CDi(Ai) = CDi(A).

Let bi be a generator of [Bi, ai]. Then bi ∈ Di and Bi ≤ CG(Ai) ≤Mg implies that

bi ∈ [Bi, ai] ≤ [B, ai] ∩ [Bi, B
g] ∩ [Bi, A] ≤ B ∩Bg ∩ [Bi, A].
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Since Bg is abelian, we deduce that Bg ≤ CG(bi) and hence CG(bi) � M because of our assumption

that Bg �M . Therefore bi /∈ I∗(M). �

We deduce from (I) that 〈ȳ1, ..., ȳk〉 ≤ O3(M̄) ≤ P̄ . In particular 〈ȳ1, ..., ȳk, x̄〉 is a 3-group and the

normaliser of 〈ȳ1, ..., ȳk〉 in M̄ has an x̄-invariant Sylow 2-subgroup. We may suppose that this 2-group

contains Ā.

(III) Bi ≤ Di ∩Mg and |Di ∩Mg| ≤ 8.

Proof. First Bi = Di ∩ CG(Ai) ≤ Di ∩Mg by (II). Then we set Ei := Di ∩Mg = NDi(B
g), and we

assume for a contradiction that |Ei| ≥ 16.

Recall that 〈bi〉 = CDi
(A) by (II). As CEi

(Bg) ≤ CEi
(A) ≤ CDi

(A) = 〈bi〉, we find a subgroup E of

order 8 of Ei such that CE(Bg) = 1 and [E,A] ≤ [Ei, A] ≤ Di ∩Bg ≤ CDi
(A) = 〈bi〉.

Thus, for every element e of Ei, we see that [A, e] ≤ 〈bi〉 is cyclic. Then 8.4.1 of [17] implies that

|A : CA(e)| = |[A, e]| ≤ 2. Now we recall that |Bg : A| = 2 and we deduce that

|Bg : CBg (e)| ≤ |Bg : CA(e)| = |Bg : A| · |A : CA(e)| ≤ 2 · |A : CA(e)| ≤ 4.

Again 8.4.1 of [17] shows that 16 ≤ |Ei| ≤ |B| = |Bg| = |Bg : CBg (e)| · |CBg (e)| = |Bg : CBg (e)|2 ≤ 16.

Altogether B = Ei ≤Mg, which contradicts (I). �

(IV) |Di| = 16.

Proof. If Di = Bi, then (II) and Lemma 8.5 imply that D#
i ⊆ I∗(M). This contradicts the statement

b1 /∈ I∗(M) in (II). Hence Di 6= Bi. We recall that |Bi| = 4 by (II) and therefore |Di| ≥ 8. At the

same time Di = [B, ȳi] admits a fixed-point-free automorphism of order 3 by (II), which means that

|Di| ≥ 16.

We set Ei := NDi
(Bg) = Di∩Mg. Then bi ∈ Bi ≤ Ei by (III) and [Ei, A] ≤ Di∩Bg ≤ Di∩CG(A) = 〈bi〉

by (II). Hypothesis 7.2 (b) and Lemma 8.4 (a) imply that Bg is normalised by some elementary abelian

subgroup of G of order 27. Then it follows from Lemma 8.6 (c) and the fact that |Bg : A| = 2 that there

is an involution a ∈ A such that CG(a) ≤Mg. This means that CDi(a) ≤ Ei. Assume for a contradiction

that |CDi
(a)| ≥ 8.

If ā is centralised by ȳi, then ȳi induces a fixed-point-free automorphism of order 3 on CDi
(a) and hence

|Ei| ≥ |CDi
(a)| ≥ 16. This contradicts (III). Therefore ā does not centralise ȳi. It follows that a /∈ Ai

and so A = 〈a〉 ×Ai. Since [Bi, Ai] = 1, but [B,Ai] 6= 1 by (II), we conclude that a does not centralise

Bi. In particular |Ei| ≥ |BiCDi(a)|  |CDi(a)| ≥ 8, which also contradicts (III).

Consequently |CDi
(a)| ≤ 4. The quadratic action of a on Di implies that |Di| ≤ |CDi

(a)|2 ≤ 16. �

(V) CD1
(ȳ2) = D1 or D1 = D2.

Proof. Assume for a contradiction that y2 does neither centralise D1 nor act fixed-point-freely on D1.

Then [D1, ȳ2] and CD1
(ȳ2) are both elementary abelian of order 4 and normalised by A, because D1

and ȳ2 are Ā-invariant. Thus both groups contain a non-trivial element that is centralised by A. But

CD1(A) = 〈b1〉 by (II), so we obtain a contradiction. Therefore, we either have that CD1(ȳ2) = D1 or

that D1 ≤ [D1, y2] ≤ D2. But in the second case (IV) implies that D1 = D2. �

(VI) The following hold:

(a) x ∈ CG(D1) and CG(D1) has cyclic Sylow 3-subgroups.

(b) D1 = D2 and ȳ1 and ȳ2 act fixed-point freely on D1.

(c) k = 2, in particular A = A1A2, A1 ∩A2 = A0 and |A : A0| = 4.

(d) 〈ȳ1, ȳ2〉 induces a Sylow 3-subgroup of Aut(D1) on D1.
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(d)In particular there is some z̄ ∈ 〈ȳ1, ȳ2〉 such that |CD1
(z̄)| = 4.

(e) For every prime q ≥ 5 we have that Oq(M̄) ≤ CM̄ (D1).

(f) There is some b0 ∈ D1 \Mg such that |NM (D1) : CNM (D1)(b0)|2 ≤ 4.

Proof. Let H := NM̄ (D1)/CM̄ (D1). Then H is isomorphic to a subgroup of Aut(D1) ∼= GL4(2) ∼= A8

by (IV).

Let R be a Sylow 3-subgroup of the full pre-image of CM̄ (ȳ1) in M such that 〈ȳ1, ..., ȳk, x̄〉 ≤ R̄. Then

R normalises D1. By (II) we have that CG(D1) ≤ CG(b1) �M . Since CG(b1) is 3-soluble by Hypothesis

8.2, we conclude with Lemma 6.4 (d) that the Sylow 3-subgroups of CG(D1), and hence of CR(D1), are

cyclic. This is one of the statements in (a).

Furthermore D1 is Ā-invariant and D1 6= CD1
(Ā1) = B1 6= 〈b1〉 = CD1

(ā1). It follows that Ā induces a

group of automorphism of order at least 4 on D1.

We recall that ȳ1 acts fixed-point-freely on D#
1 and refer to Page 22 of [10]. Then we see that the

group NM̄ (〈ȳ1〉)/CNM̄ (〈ȳ1〉)(D1) is isomorphic to a subgroup of (A5 × C3) o C2 of order divisible by

12. Hence NM̄ (〈ȳ1〉)/〈ȳ1〉CNM̄ (〈ȳ1〉)(D1) is isomorphic to a subgroup of S5 of order divisible by 4.

Keeping in mind that ā1 inverts ȳ1 and does not centralise D1, we improve the previous statement:

NM̄ (〈ȳ1〉)/〈ȳ1〉CNM̄ (〈ȳ1〉)(D1) is isomorphic to a subgroup of S5 that has order divisible by 4 and a

subgroup of index 2.

For the second statement in (a), assume for a contradiction that x /∈ CG(D1). As x is isolated in G,

the image of x in NM̄ (ȳ1)/〈ȳ1〉CNM̄ (ȳ1)(D1) is isolated. The only subgroups of S5 of order divisible by

4 that have an isolated element of order 3 are isomorphic to A4. But A4 does not have a subgroup of

index 2. This contradicts the previous paragraph and so (a) holds.

We also know that ACG(D1) has cyclic Sylow 3-subgroups and that 〈x〉 = Ω1(CR(D1)). As x is not

inverted in G, this implies that ACG(D1) has a normal 3-complement. Moreover, every element of

〈ȳ1, ..., ȳk〉 is inverted by ā1, ..., āk ∈ A. So we conclude that 〈ȳ1, ..., ȳk〉 ∩ CM̄ (D1) = 1.

It follows that CD1(ȳ2) 6= D1 and hence D1 = D2 = [B, y2] by (V). Now ȳ1 and ȳ2 act fixed-point freely

on D1, so (b) is true. Furthermore, the fact that r3((A5×C3)oC2) = 2 implies that k = 2. In particular

4 = 2k = |Ā| = |A : A0| and Ā = Ā1 × Ā2, so A1 ∩A2 = A0 and A1A2 = A. This is (c).

We recall that H := NM̄ (D1)/CM̄ (D1) and it follows from this that S3 × S3
∼= 〈ȳ1, ȳ2〉Ā is isomorphic

to a subgroup of H. As 〈ȳ1, ȳ2〉CM̄ (D1)/CM̄ (D1) is a 3-subgroup of H, it induces a Sylow 3-subgroup

of Aut(D1) ∼=GL4(2) on D1. So we find an element z̄ ∈ 〈ȳ1, ȳ2〉 such that |CD1(z̄)| = 4, which means

that (d) holds.

Moreover 〈ȳ1, ȳ2〉 ≤ O3(M̄) by (II), so it follows that O3(H) is a Sylow 3-subgroup of H.

Having in mind that H is isomorphic to a subgroup of GL2(4) ∼= A8 and that a 3-Sylow subgroup

of A8 is self-centralising, we see that O3(H̄) = F ∗(H̄). This implies that a Sylow 2-subgroup of H is

isomorphic to a subgroup of the normaliser in A8 of a Sylow 3-subgroup. This normaliser has order

28 · 32. As Oq(M̄) centralises ȳ1 and therefore normalises D1 = [B, ȳ1], we conclude, for every prime

q ≥ 5, that Oq(M̄) ≤ CM̄ (D1). This is (e).

Finally assume for a contradiction that every element b ∈ D1 \Mg is centralised by a Sylow 2-subgroup

of H. Since Ā ≤ NM̄ (D1) and CD1
(Ā) = 〈b1〉, a Sylow 2-subgroup of H centralises exactly one involution

of D1. Consequently we see from Sylow’s Theorem that D1 \Mg is in the same orbit as b1. Furthermore

b1 ∈ Bg ≤Mg and all involutions of B1 are conjugate under ȳ1 by (II).

Hence 11 = 3 + (16− 8) ≤ |B#
1 |+ |D1 \Mg| = |B#

1 ∪D1 \Mg| ≤ |bH1 | = |H : CH(b1)| ≤ |H|3 = 9.

This contradiction proves (f) because |H|2 = 23. �

(VII) B ∩Mg ∩ I∗(M) 6= ∅.
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Proof. We know from (VI) (a) that x centralises D1. First we show that CD1
(z̄) ∩Mg 6= 1 for some

z̄ ∈ 〈ȳ1, ȳ2〉.
For this we use (III) and (VI) (b) and we deduce that B1B2 ≤ D1∩Mg. Again by (VI) (b), both ȳ1 and

ȳ2 act fixed-point-freely on D#
1 , so Lemma 2.1 (e) yields that D1 = CD1(ȳ1ȳ2) × CD1(ȳ1ȳ

2
2). Assume

that CD1
(z̄) ∩ B1B2 = 1 for all z̄ ∈ {ȳ1ȳ2, ȳ1ȳ

2
2}. Then B1B2 has order at most 4 and (II) implies that

B1 = B2 is centralised by A1 and A2. But A = A1A2 by (VI) (c) and 1 6= [B1, a1] by (II), which gives

a contradiction.

So we have some element z̄ ∈ 〈ȳ1, ȳ2〉 such that CD1(z̄) ∩Mg 6= 1, which means that there is some

d ∈ CD1(z̄) ∩B ∩Mg ≤ B ∩Mg such that 〈x, z〉 ≤ CG(d). Then Lemma 8.4 (e) yields the assertion. �

(VIII) If B0 ≤ B is such that B#
0 ⊆ I∗(M), then |B0| ≤ 8.

Proof. Let B0 be a subgroup of B of order 24. Here we need to recall that A0 = CA(B), and then

|Bg : A0| = |Bg : A| · |A : A0| = 2 · |Ā| = 2 · 2k = 8 by (VI) (c). As |Bg
0 | = 16, this means that

Bg
0 ∩ A0 6= 1. Moreover A0 ∩ I∗(Mg) = ∅ by (I), which implies that (Bg

0 )# * I∗(Mg) and then

B#
0 * I∗(M). �

(IX) D1 = [B, 〈ȳ1, ȳ2〉] and |B| ≤ 27.

Proof. We set D := D1(= D2 by (VI) (b)). Then D = [B, ȳ1] = [B, ȳ2] and so D = 〈D〈ȳ1,ȳ2〉〉 =

[B, 〈ȳ1, ȳ2〉].
As CB(〈ȳ1, ȳ2〉)·〈ȳ1, ȳ2〉 has non-cyclic Sylow 3-subgroups, we may apply Lemma 8.4 (e) and then (VIII).

This yields that |CB(〈ȳ1, ȳ2〉)| ≤ 8. Finally Lemma 2.1 (b) and (IV) give that

|B| = |CB(〈ȳ1, ȳ2〉)× [B, 〈ȳ1, ȳ2〉]| = |CB(〈ȳ1, ȳ2〉)| · |D| ≤ 8 · 16 = 27. �

(X) If 1 6= N̄ is an abelian normal subgroup of M̄ of odd order, then CB(N̄) = 1.

Proof. Assume for a contradiction that there is a non-trivial M̄ -invariant subgroup B0 of B of order at

most 8. Then B0 does not admit a group of automorphisms of order 9, because if m ≤ 3, then |GLm(2)|
divides (23 − 1) · (23 − 2) · (23 − 22) =7 · 3 · 23. Hence Lemma 8.4 (e) implies, together with Hypothesis

7.2, that B#
0 ⊆ I∗(M).

Furthermore there is an involution b ∈ CB0(A) because the 2-group A normalises the 2-group B0. Then

Lemma 8.7 and the fact that |Bg : A| = 2 give that b ∈ CB(A) ≤ B ∩Mg. As B ∩Mg normalises Bg
0 ,

there is an involution c ∈ Bg
0 such that B ∩Mg centralises c. In particular c ∈ CBg (b) ≤ M ∩ Bg = A

because b ∈ B#
0 ⊆ I∗(M). Now c ∈ (B#

0 )g ⊆ I∗(Mg), so we deduce from (I) that c /∈ A0 and c̄ 6= 1.

Hence (VI) (c) provides some i ∈ {1, 2} such that c /∈ Ai and such that A = 〈c〉Ai. Then (III) implies

that B1B2 ≤ D1∩Mg ≤ B∩Mg centralises c. This shows that Bi = CD1
(Ai) is centralised by 〈c〉Ai = A.

From (II) we obtain the contradiction 4 = |Bi| ≤ |CD1(A)| = |〈bi〉| = 2.

Finally let 1 6= N̄EM̄ be abelian and of odd order. Then Lemma 2.1 (b) implies thatB = [B, N̄ ]×CB(N̄).

Since N̄ is normal in M̄ , the groups [B, N̄ ] and CB(N̄) are M̄ -invariant. But |B| ≤ 27 < 24 · 24 by (IX).

As [B, N̄ ] 6= 1, the size restriction from the previous paragraph yields that CB(N̄) = 1. �

(XI) B = D1 and (therefore) NM (D1) = M .

Proof. Let q ≥ 5 be a prime number. Then (VI) (e) and (X) imply first that Oq(M̄) centralises D1

and then that Z(Oq(M̄)) = 1, because Z(Oq(M̄)) is an M̄ -invariant subgroup of B. We deduce that

F ∗(M̄) = O3(M̄) and therefore x̄ ∈ CM̄ (O3(M̄)) ≤ O3(M̄). As x̄ is isolated in M̄ , this means that 〈x̄〉
is an abelian normal subgroup of M̄ . Moreover 1 6= D1 ≤ CB(〈x̄〉) by (VI) (a). Then (X) forces 〈x̄〉 = 1,

i.e. x ∈ CM (B).
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Using (VI) (d) we choose an element z̄ ∈ 〈ȳ1, ȳ2〉# that centralises a subgroup of order 4 in D1. Since

z̄ is inverted by some element of Ā and x is isolated in M , we conclude that a Sylow 3-subgroup of

the full pre-image of 〈z̄〉 in M is not cyclic. Then (VIII) and Lemma 8.4 (e) yield that CB(z̄) has

order at most 8. Recalling that 4 ≤ |D1 ∩ CB(z̄)| we deduce, together with Lemma 2.1 (b), that

CB(〈ȳ1, ȳ2〉) ⊆ CB(z̄) \ [B, ȳ1]# = CB(z̄) \D#
1 , so CB(〈ȳ1, ȳ2〉) is cyclic.

Moreover H̄ := NO3(M̄)(〈ȳ1, ȳ2〉) normalises CB(〈ȳ1, ȳ2〉). Then it centralises CB(〈ȳ1, ȳ2〉) because this

is a cyclic 2-group. Furthermore, (VI) (d) shows that NH̄(D1)/CH̄(D1) = 〈ȳ1, ȳ2〉CH̄(D1)/CH̄(D1).

Now we have the following: D1 = D2 = [B, 〈ȳ1, ȳ2〉] by (VI) (b) and (IX), and B = D1 × CB(〈ȳ1, ȳ2〉)
by Lemma 2.1 (b). Thus we conclude that H̄ = 〈ȳ1, ȳ2〉 and that, therefore, H̄ = O3(M̄) is an abelian

normal subgroup of M̄ of odd order. Then (X) gives that CB(H̄) = 1 and finally B = [B, H̄]×CB(H̄) =

D1 × CB(H̄) = D1. �

(XII) Bg ≤ CG(b1) and b1 is 2-central in M and in Mg.

Proof. First (II) yields that b1 ∈ B ∩Bg. We recall that B is abelian, hence B,Bg ≤ CG(b1).

By Sylow’s Theorem there is a Sylow 2-subgroup S0 of M such that AB ≤ S0. Then (II) and (XI) show

that 1 6= Z(S0) ∩B ≤ CB(A) = CD(A) = 〈b1〉. This means that b1 is a 2-central involution of M .

We apply (IV) and (XI): Then |Bg| = 16 and therefore A has order 8. Moreover b1 ∈ B ∩ Bg by (II),

so in particular (VI) (c) shows that A0 = 〈b1〉. In addition (II) yields that A does not centralise any of

the groups B1 = CD1
(Ā1) or B2 = CD2

(Ā2). Then we deduce from (VI) (c) that A1 ∩ A2 = A0 and so

CA(B1) ∩ CA(B2) ≤ A1 ∩A2 = A0 = 〈b1〉.
Let S be a Sylow 2-subgroup of Mg such that Bg(B ∩ Mg) ≤ S. According to (VII) we let b ∈
B ∩Mg ∩ I∗(M). Then Z(S) ≤ CG(b) ≤M and so we see that b1 ∈ Z(S) as follows:

1 6= Z(S) ∩Bg ≤ CG(B ∩Mg) ∩A = CA(B ∩Mg) ≤ CA(B1) ∩ CA(B2) = 〈b1〉 by (III). �

For our final contradiction we investigate CG(b1). By (XII) we know that Bg ≤ CG(b1) and hence

CG(b1) �M .

Moreover (VI) (a) gives that x ∈ CG(D1) ≤ CG(b1). Together with Lemma 6.4 (e) this implies that

CG(b1) has cyclic Sylow 3-subgroups and then Lemma 3.4 (e) yields that CG(b1) has a normal 3-

complement.

We set L := O3′(CG(b1)) and let ∧ : CG(b1)→ CG(b1)/O2(L) denote the natural epimorphism.

Then O2(L) = O2(CG(b1)) and Corollary 7.3 implies that L̂ acts faithfully on O2(L) and O2(L̂) = 1.

Consequently L̂ acts faithfully on the elementary abelian 2-group O2(L)/Φ(O2(L)) =: E.

Furthermore, (XII) and Corollary 8.14 show that M ∩ L and Mg ∩ L contain Sylow 2-subgroups of L.

We conclude that O2(L) ≤ Mg ∩M . Therefore, if b0 ∈ D1 \Mg is an element as in (VI) (f), then

b0 /∈ O2(L). Then (VI) (e) and (XI) imply that |M : CM (b0)|2 = |NM (D1) : CNM (D1)(b0)|2 ≤ 4.

We recall that O2(L̂) = 1 and that L ≤ CG(b1) is soluble by Hypothesis 8.2. It follows that [F (L̂), b̂0] 6= 1

and so there is a prime q such that [Oq(L̂), b̂0] 6= 1. Let Q̂ be an elementary abelian q-subgroup of

[F (L̂), b̂0] that is inverted by b̂0. Then q ≥ 5 and we compute that

|E : CE(b̂0)| ≤ |E : CO2(L)(b̂0)φ(O2(L))/φ(O2(L))| = |O2(L) : CO2(L)(b̂0)φ(O2(L))|
≤ |O2(L) : CO2(L)(b̂0)| ≤ |O2(L) : CO2(L)(b0)|
≤ |M : CM (b0)|2 ≤ 4.

Therefore, Lemma 2.2 (c) implies that q ≤ 5. Now q = 5 and |E : CE(b̂0)| = 4. Moreover, Part (b) of

the same lemma shows that Q̂ is cyclic.
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Assume for a contradiction that Q̂ is x̂-invariant. Then it follows by Lemma 2.1 (c) that Q̂ ≤ CL̂(x̂) =

Ĉ ∩ L, because a group of order 5 does not admit an automorphism of order 3. This implies the contra-

diction 1 6= Q̂ ≤ [Ĉ ∩ L, b̂0] ≤ ̂[C ∩ L,B] ≤ B̂.
We have that |[E, Q̂] : C[E,Q̂](b̂0)| ≤ |E : CE(b̂0)| = 4 which, together with Part (d) of Lemma 2.2, gives

that |C[E,Q̂](b̂0)|2 = |[E, Q̂]| = |[E, Q̂] : C[E,Q̂](b̂0)| · |C[E,Q̂](b̂0)|.
Then 4 ≥ |[E, Q̂] : C[E,Q̂](b̂0)| = |C[E,Q̂](b̂0)|. In particular we see that |[E, Q̂]| = |C[E,Q̂](b̂0)|2 = 16.

Now let Ẑ := Z([Oq(L̂), b̂0]). Then Ẑ is x̂-invariant because L̂ is x̂-invariant. Thus b̂0 centralises Ẑ. We

deduce that [E, Q̂] and C[E,Q̂](b̂0) are both Ẑ-invariant. Moreover |C[E,Q̂](b̂0)| = 4, whence we see that

Ẑ centralises C[E,Q̂](b̂0).

We calculated above that |[E, Q̂]| = 16 and therefore C[E,Q̂](b̂0) ≤ [E, Q̂] implies that Ẑ centralises

[E, Q̂]. On the other hand Q̂ normalises the abelian group [E, Ẑ]. So Lemma 2.1 (b) yields that

[[E, Ẑ], Q̂] ≤ CE(Ẑ) ∩ [E, Ẑ] = 1 and it follows that [E, Ẑ] = C[E,Ẑ](Q̂)× [[E, Ẑ], Q̂] = C[E,Ẑ](Q̂).

We apply 8.1.8 of [17]: Then for every ĥ ∈ Oq(L̂) the commutator [ĥ, b̂0] is inverted by b̂0. Thus our

investigation above shows that [E, Ẑ] ≤ CE(〈[ĥ, b̂0] | ĥ ∈ Oq(L̂)〉) = CE([Oq(L̂), b̂0]) ≤ CE(Ẑ).

We obtain our final contradiction: E = [E, Ẑ]CE(Ẑ) = CE(Ẑ). �

For the next lemma we recall that T0 := 〈Bg | g ∈ G and Bg ≤ T 〉.

Lemma 9.3. Suppose that Hypothesis 8.2 holds and that |B| ≥ 8.

Let T1 := 〈Ag | AmaxB, g ∈ G and Ag ≤ T 〉. Then T0 is contained in T1, and NG(T0) ≤ M or

NG(T1) ≤M .

Proof. Let g ∈ G be such that Bg ≤ T and let B1 and B2 be different maximal subgroups of B. Then

Bg
i ≤ T and so Bg

i ≤ T1 for all i ∈ {1, 2}. This implies that Bg = Bg
1B

g
2 ≤ T1 and in particular T0 ≤ T1.

Suppose now that T0 ≤ O2(TP ). Then we see that TP = O2(TP ) · NTP (T0) by Lemma 8.13. Thus

NG(T0) has non-cyclic Sylow 3-subgroups. We recall that NG(T ) normalises T0 by definition of T0 and

hence x ∈ NG(T0). Then NG(T0) ≤M by Lemma 6.4 (e).

We suppose that NG(T0) � M . Then T0 � O2(TP ) and Part (b) of Lemma 8.13 does not hold. So (a)

of the lemma is true and this means that CG(b) ≤M for all b ∈ B#. We will refer to this by (∗).
Now there is some g ∈ G such that Bg ≤ T , but Bg � O2(TP ). The elementary abelian group

BgO2(TP )/O2(TP ) acts faithfully on O3(TP/O2(TP )). Thus Thompson’s Dihedral Lemma (see Lemma

24.1 of [14]) provides an element y ∈ P ∩O2,3(TP ) of order 3 and some b ∈ Bg such that yb = y−1 and

[y,Bg] ≤ 〈y〉O2(PT ). In particular y is inverted in G and therefore it is not isolated in G. We conclude

that y is not conjugate to an element of 〈x〉.
We will show that y normalises Z(T1). Then, as T is x-invariant, we see that x normalises T1 and hence

it normalises Z(T1). So Lemma 6.4 (e) gives our statement 〈x, y〉 ≤ NG(T1) ≤M .

We set L := O2(TP )〈y〉Bg and B0 := O2(L) ∩ Bg. Then we have that F (L/O2(L)) = O3(L/O2(L)) =

〈y〉O2(L)/O2(L) is cyclic of order 3. As y is inverted by b ∈ Bg ⊆ L, we see that L/O2(L) ∼= S3 and

Bg = B0〈b〉. Hence |Bg : B0| = 2 and |Bgy : By
0 | = 2. Furthermore we recall that Bg ≤ T , so it follows

that T ∩ L ∈ Syl2(L) and then that O2(L) ≤ T . We moreover define L1 := 〈BL
0 〉 ≤ O2(L) ≤ T and

Z := CPT (L1). Then for all h ∈ L we have that |Bgh : Bh
0 | ≤ 2, and the definition of T1 implies that

L1 ≤ T1 and so Z(T1) ≤ CT (L1) ≤ Z.
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We see that Z centralises Bh
0 for every h ∈ L. Thus Z ≤ CG(B0)∩CG(By

0 ) and we deduce from Lemma

8.6 (c) and the fact that B0 maxBg that Z ≤Mg∩Mgy. In particular Z is a 2-group, since M is strongly

3-embedded and, by definition, Z normalises Bg and Bgy. Moreover L ≤ NG(L1) ∩ PT ≤ NG(Z).

If b centralises Z, then Lemma 2.3 shows that y centralises Z/Φ(Z) and hence [Z, y] = 1 by Lemma 2.1

(h). In particular Z(T1) is y-invariant in this case.

Recall that Bg = B0〈b〉 and assume for a contradiction that [b, Z] 6= 1. Then 1 6= [b, Z] ≤ [Bg, Z] ≤
Bg ∩Z and so Bgy ∩Z = (Bg ∩Z)y 6= 1. Consequently there is some non-trivial element b0 ∈ Bgy ∩Z.

We conclude that B0 ≤ CG(Z) ≤ CG(Bgy ∩ Z) ≤ CG(b0) and (∗) yields that B0 ≤ CG(b0) ≤ Mgy.

Using Lemma 9.2 and the fact that |Bg : B0| = 2, we deduce that [Bg, Bgy] = 1. This implies the

contradiction 1 = [b, by] = by−1byby−1by = y4 = y. It follows that b centralises Z. �

Lemma 9.4. Suppose that Hypothesis 8.2 holds. Let H be a proper subgroup of G such that H ∩M
contains x and some x-invariant Sylow 2-subgroup S of H. Suppose that every proper subgroup of H

containing 〈x〉 · S is a subgroup of M . Then one of the following holds:

(a) H ≤M or

(b) H is soluble, it has a normal 3-complement and the Sylow 3-subgroups of H have order 3.

Proof. Suppose that H � M . Then H has cyclic Sylow 3-subgroups containing x by Lemma 6.4 (e).

Hence Lemma 3.4 (e) yields that H has a normal 3-complement. Since H ∩C ≤ H ∩M contains a Sylow

3-subgroup of H by Lemma 3.2 and H �M , the hypothesis of our lemma yields that H = O3′(H) · 〈x〉.
In particular we see that 〈x〉 ∈Syl3(H).

Assume for a contradiction that H is not soluble and let N be the largest normal soluble subgroup of

H. Then N · S · 〈x〉 is a proper subgroup of H and so our hypothesis implies that N ≤M .

If x ∈ N , then Lemma 3.4 (c) gives that H = N · CH(x) ⊆ M · C ⊆ M . This is a contradiction. Thus

x /∈ N and it follows that N is a 3′-group.

Let ̂ : H → H/N denote the natural epimorphism. Then F (Ĥ) = 1, so F ∗(Ĥ) = E(Ĥ) by our choice

of N . Then Hypothesis 8.2 shows that E(Ĥ) is simple. We apply Lemma 2.5 to the 3-nilpotent group

Ĥ: As C is soluble, we deduce that E(Ĥ) is isomorphic to Sz(8) and that 〈x̂〉 induces the full outer

automorphism group on E(Ĥ) by Lemma 2.4 (a).

Let E be the full pre-image of E(Ĥ) in H. Then Lemma 2.4 (c) provides some Q ∈Syl5(E) such

that Q̂ is centralised by x̂. Hence ĈH(x) = CĤ(x̂) (by Lemma 2.1 (c)) has order divisible by 5. As

ĈH(x) ≤ M̂ ∩H, it follows that M̂ ∩H contains an element of order 5 of Ê.

In addition M ∩H contains S, which is a Sylow 2-subgroup of H, and therefore |Ĥ : Ĥ ∩M | is odd. In

particular |E : E ∩M | is odd. But Ê is isomorphic to Sz(8), so it does not have a proper subgroup of

odd index containing an element of order 5, by Lemma 2.4 (e). Then we conclude that Ê ≤ Ê ∩M .

This implies that E ≤ H ∩M . From F ∗(Ĥ) = E(Ĥ) = Ê and the fact that 〈x̂〉 induces the full outer

automorphism group on Ê, we see that E · 〈x〉 is a normal subgroup of H in which 〈x〉 is a Sylow

3-subgroup. Thus a Frattini argument shows that H = (E · 〈x〉) ·NH(〈x〉) = E ·NH(〈x〉) ⊆ E ·C ⊆M .

This is a contradiction. It follows that H is soluble with the properties stated in (b). �

Lemma 9.5. Suppose that Hypothesis 8.2 holds. Then

(a) |B| ≤ 4, or

(b) whenever H is a proper subgroup of G that contains T 〈x〉, then H ≤M .

Proof. Assume that |B| > 4 and that T 〈x〉 ≤ H �M for some proper subgroup H of G. In addition we

choose H of minimal order.
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(I) H is soluble and has a normal 3-complement. Furthermore O(H) = 1 and 〈T, x〉 is a Hall {2, 3}-
subgroup of H.

Proof. Lemma 9.4 shows that H is soluble and has a normal 3-complement and cyclic Sylow 3-subgroups

of order 3. This implies that 〈T, x〉 is a Hall {2, 3}-subgroup of H, because x ∈ NG(T ) and T ∈ Syl2(G)

by Corollary 8.14. Moreover B is not cyclic and therefore Lemma 8.6 (b) and Hypothesis 7.2 (b) give

a subgroup A ≤ B of order at least 4 such that A# ⊆ I∗(M). Now A ≤ T ≤ H whence A acts

coprimely on O(H). It follows that O(H) = 〈CO(H)(a) | a ∈ A#〉 ≤ M by Lemma 2.1 (e) and then

[O(H), O2(M)] ≤ O(H)∩O2(M) = 1, because O2(M) ≤ T ≤ H. Moreover O2(M) = F ∗(M) by Lemma

7.4, which yields that O(H) = 1. �

(II) There are a prime q and an x-invariant Sylow q-subgroup Q of H such that H = Q · T · 〈x〉,
Q ·O2(H) = O2,q(H)EH and Φ(Q) = M ∩Q.

Proof. As H � M and 〈T, x〉 ≤ M is a Hall {2, 3}-subgroup of H by (I), there is a prime q ≥ 5

such that q divides |H : H ∩M |. We recall that H is soluble and has a normal 3-complement. Hence

Lemma 2.1 (f) yields an x-invariant Sylow q-subgroup Q of H that is contained in O3′(H), and then

the solubility of H implies that Q can be chosen such that QT is a Hall-subgroup of H. Then Q � M

and by the minimal choice of H we get H = Q · T · 〈x〉. In particular O2,q(H) 6= O2(H), since H has a

normal 3-complement by (I).

We set L := T ∩O2,q,2(H) ∈ Syl2(O2,q,2(H)). A Frattini argument gives that H = O2,q,2(H) ·NH(L) =

O2,q(H) · NH(L). Since L E T and L is normalised by x, it follows from the minimal choice of H and

the fact that 〈x, T 〉 ≤ NH(L) that O2,q(H) � M or NH(L) = H. In the second case we conclude that

L = O2(H) and from T ∩O2,q,2(H) = L we deduce that T = L. Hence O2,q(H) = O3′(H) �M , too.

Again the minimal choice of H implies that Q ∈ Sylq(O2,q(H)). Therefore QO2(H) = O2,q(H)EH and

so Φ(Q)O2(H)EH. We deduce, once more from the minimal choice of H, that Φ(Q) ≤M . Hence M ∩Q
is normal in Q and it is also normalised by 〈x, T 〉. Furthermore Maschke’s Theorem (for example 8.4.6 of

[17]) provides a subgroup Q0 of Q such that Q0O2(H) is 〈x, T 〉-invariant and such that Q = (Q∩M) ·Q0

and (Q ∩M) ∩Q0 = Φ(Q). Finally the minimal choice of H shows that H = 〈T, x〉Q0 and so Q0 = Q

implies that Φ(Q) = M ∩Q. �

(III) Let A0 ≤ T be elementary abelian. Suppose that, whenever A is a maximal subgroup of A0 and

h ∈ G is such that Ah ≤M , then Ah
0 ∈M . Then A0 ≤ O2(H).

Proof. We assume for a contradiction that A0 � O2(H) and let ∼: H → H/O2(H) denote the natural

epimorphism. Then 1 6= Ã0 is elementary abelian and so Lemma 2.1 (d) implies that Q̃ = 〈CQ̃(Ã) |
Ãmax Q̃〉. Let A be a maximal subgroup of A0 and let Q0 ≤ Q be such that Q̃0 = CQ̃(Ã). Then Q̃0

is Ã0-invariant and we see that L := Q0A0O2(H) is a subgroup of H. Moreover, A0O2(H) is a Sylow

2-subgroup of L and so O2(L) ≤ A0O2(H) ≤ T ≤ M . We recall that Q̃0 = CQ̃(Ã), so it follows that

A ≤ O2(L). Let h ∈ Q0. Then Ãh ≤ O2(L) ≤M and our hypothesis yields that Ah
0 ≤M . In particular

[Q0, A0] ≤ 〈AQ0

0 〉 ≤M and so [Q̃0, Ã0] ≤ ˜[Q,A0] ≤ ˜(Q ∩M).

We now apply Lemma 2.1 (b), which together with (II) gives that

CQ̃(Ã) = Q̃0 = CQ0
(A0)[Q̃0, Ã0] ≤ CQ̃(Ã0) ˜(Q ∩M) = CQ̃(Ã0)Φ̃(Q) = CQ̃(Ã0)Φ(Q̃).

It follows that Q̃ = 〈CQ̃(Ã) | Ãmax Q̃〉 ≤ CQ̃(Ã0)Φ(Q̃) and so Q̃ = CQ̃(Ã0). Moreover, we deduce from

(II) that Q̃ = F ∗(Q̃T ). This implies that Ã0 ≤ C
Q̃T

(F ∗(Q̃T )) = F ∗(Q̃T ) = Q̃. This is a contradiction,

because Q̃ is a q-group and Ã0 is a non-trivial 2-group. �

(IV) NG(T0) �M and B# ⊆ I∗(M).
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Proof. Let g ∈ G be such that Bg ≤ T . Then for every maximal subgroup A of Bg and every h ∈ G
such that Ah ≤ M , we see that Ah ≤ Bgh ∩M and so |Bgh : Bgh ∩M | ≤ 2. Thus Lemma 8.4 (a) and

Lemma 9.2 yield that Bgh ≤ CG(B) ≤M . In particular (III) shows that Bg ≤ O2(H).

We conclude that T0 ≤ O2(H). Moreover Lemma 8.13 yields that H = O2(H) · NH(T0) and then the

fact that O2(H) ≤ T ≤ NG(T0) implies that T0 EH.

In particular H ≤ NG(T0), whence NG(T0) �M . Consequently Part (a) of Lemma 8.13 holds. �

(V) If g ∈ G and |Bg : Bg ∩M | ≤ 4, then Bg ≤M .

Proof. Assume for a contradiction that Bg � M and set A := Bg ∩M . Then A 6= 1 because |B| ≥ 8.

If B ∩ Bg 6= 1, then (IV) implies that Bg ≤ CG(b) ≤ M for all b ∈ B# ∩ Bg. This is a contradiction.

If CA(B) 6= 1, then (IV) shows that B ≤ CG(a) ≤ Mg for all a ∈ CA(B)#. We then deduce from

Lemma 8.12 that [B,Bg] = 1, which gives the contradiction Bg ≤ NG(B) = M . Consequently Bg ∩B =

CA(B) = 1.

Now let a ∈ A#. Then 1 6= CB(a) ≤Mg by (IV) and for all b ∈ CB(a)# we see by 9.1.1 (b) of [17] that

|CBg (b)|2 ≥ |Bg| ≥ 8. As CBg (b) ≤ Bg ∩M = A, we deduce that A is not cyclic. In particular the group

Ā = A/CM (B) ∼= A is not cyclic. For all c ∈ A# we moreover have that [A,CB(c)] ≤ [A,Mg] ∩ B ≤
Bg ∩B = 1 and hence CB(c) ≤ CB(A). This implies that CB(c) = CB(A) for all c ∈ A#. We recall that

a ∈ A# ⊆ M . Thus ā 6= 1, as CA(B) = 1, and so 6.7.7 in [17] provides some h̄ ∈ M̄ of odd order that

is inverted by ā.

Assume for a contradiction that CĀ(h̄) 6= 1 and let c ∈ A be such that 1 6= c̄ ∈ CĀ(h̄). Then C[B,h̄](c̄)

is h̄-invariant. We have seen that C[B,h̄](c̄) = C[B,h̄](c) = C[B,h̄](a) = C[B,h̄](ā). Consequently Lemma

2.3 implies that C[B,h̄](c̄) ≤ C[B,h̄](h̄) = 1. But [B, h̄] is a 2-group and c̄ has order 2, which leads to the

contradiction [B, h̄] = 1.

Thus CĀ(h̄) = 1. We view this statement in light of Lemma 8.8: For all i ∈ {1, ..., k} and all j ∈ {1, ..., l},
the elements ȳi and ḡj are inverted by some element of Ā and it is true that CĀ(ȳi) respectively CĀ(ḡj)

is a maximal subgroup of Ā. As Ā is not cyclic, we deduce that k = 0 = l and thus E(M̄) 6= 1, which

forces [Ā, O3(M̄)] = 1. In particular |B| ≥ 212 by Lemma 8.11 and Lemma 8.8 (a) shows that |B :

CB(Ā)| ≥ |Ā|2 = |A|2 = (|B|/|B : A|)2. It follows that 212 ≤ |B| ≤ |CB(Ā)| · |B| ≤ |B : A|2 ≤ 42 = 16.

This is a contradiction. �

We now work towards a final contradiction.

Let T1 := 〈Ag | AmaxB, g ∈ G and Ag ≤ T 〉. Then Lemma 9.3 and (IV) give that NG(T1) ≤M .

Also, let g ∈ G and A0 maxB be such that Ag
0 ≤ T . Then for every maximal subgroup A of Ag

0 and

h ∈ G such that Ah ≤ M , we have that |Bgh : Bgh ∩M | ≤ |Bgh : Ah| = 4. Thus (V) yields that

Bgh ≤M . In particular Agh
0 ≤M and so (III) implies that Ag

0 ≤ O2(H). In particular T1 ≤ O2(H).

Finally let h ∈ Q. Then Bg ∩ T ≤ T1 ≤ O2(H) and so (Bg ∩ T )h ≤ O2(H) ≤ T . Hence it follows that

(Bg ∩ T )h = Bgh ∩ Th ∩ T ≤ Bgh ∩ T and so |Bgh : Bgh ∩ T | ≤ |Bgh : (Bg ∩ T )h| = |Bg : Bg ∩ T | ≤ 2.

This means that Bgh ≤ T1 and so Q ≤ NG(T1) ≤M . This is a contradiction. �

Lemma 9.6. Suppose that Hypothesis 8.2 holds. Whenever H ≤ G is a proper subgroup of G that

contains T 〈x〉 and such that O2(H) 6= 1, then H ≤M .

Proof. Assume that this is false. Then there exists some proper subgroup H of G such that T 〈x〉 ≤ H �
M and O2(H) 6= 1. We choose H of minimal order.

(I) H is soluble, T 〈x〉 is a Hall {2, 3}-subgroup of H, and H ∩M is a maximal subgroup of H.
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Proof. Let U be a proper subgroup of H that contains 〈x〉T . Then O2(H) ≤ T ≤ U and so O2(U) 6= 1.

It follows from the minimal choice of H that U ≤ M . Therefore we may apply Lemma 9.4. It yields

that H is soluble, that it has a normal 3-complement and that its Sylow 3-subgroups have order 3.

In particular we see that 〈x〉 ∈ Syl3(H). Moreover H � M by assumption, thus H ∩M is a maximal

subgroup of H, and moreover |H : M ∩H| is coprime to 2 and 3. �

(II) |B| ≤ 4 and M is soluble. In addition Ω1(Z(T ))# ⊆ B# ⊆ I∗(M) and NH(Ω1(Z(T ))) = H ∩M .

Proof. Lemma 9.5 shows that |B| ≤ 4. In particular M̄ is isomorphic to a subgroup of S3. As CM (B)

is soluble by Hypothesis 7.2 (a), we see that M is soluble.

From F ∗(M) = O2(M) by Lemma 7.4 and from (32.4) of [3] we obtain that 〈Ω1(Z(T ))M 〉 is an elemen-

tary abelian normal subgroup of M that is 2-reduced. It follows from Lemma 8.4 (d) that Ω1(Z(T )) ≤ B.

We recall that B E M and that |B| ≤ 4, moreover r(P ) ≥ 3 by Hypothesis 7.2 (b). Then we see

that CG(B) has non-cyclic Sylow 3-subgroups. As Ω1(Z(T )) is a subgroup of B, we conclude that

Ω1(Z(T ))# ⊆ B# ⊆ I∗(M) by Lemma 8.4 (f) and that CG(Ω1(Z(T ))) has non-cyclic Sylow 3-subgroups.

Also, since Ω1(Z(T )) is normalised by x, it follows that NG(Ω1(Z(T ))) ≤M , by Lemma 6.4 (e). In par-

ticular NH(Ω1(Z(T ))) ≤ H ∩M .

Assume for a contradiction that NH(Ω1(Z(T ))) 6= H ∩M . As T 〈x〉 ≤ NH(Ω1(Z(T ))) and T 〈x〉 is a Hall

{2, 3}-subgroup of H by (I), there is some q-element h ∈ H ∩M for some prime q ≥ 5 that does not

normalise Ω1(Z(T )). On the other hand h ∈ M normalises B. We recall that |B| ≤ 4 and q ≥ 5, and

then we see that h centralises B. Now h centralises Ω1(Z(T )), which is impossible. �

(III) F ∗(H) = O2(H).

Proof. As 1 6= O2(H)E T , we find some element c ∈ O2(H) ∩ Ω1(Z(T ))#. In particular (II) yields that

c ∈ B and CG(c) ≤M . Let q be an odd prime. Then Oq(H) ≤ CH(O2(H)) ≤ CG(c) ≤M and therefore

[Oq(H), O2(M)] ≤O2(H) ∩O2(M) = 1, because O2(M) ≤ T ≤ H.

We conclude that Oq(H) ≤ CM (O2(M)) = CM (F ∗(M)) ≤ F ∗(M) = O2(M) by Lemma 7.4. But H is

soluble by (I), and therefore Oq(H) = 1 forces F ∗(H) = O2(H). �

We set V := 〈Ω1(Z(T ))H〉. Then (32.4) of [3] implies that O2(H/CH(V )) = 1 and that V is elementary

abelian. Let ˆ : H → H/CH(V ) denote the natural epimorphism.

(IV) The group Ĥ has a unique minimal normal subgroup N̂ that is abelian. Moreover it is true that

CĤ(N̂) = N̂ , Ĥ = N̂ · ̂(H ∩M) and N̂ ∩ ̂(H ∩M) = 1.

Proof. The group Ĥ acts on Ω1(Z(T ))H = {Ω1(Z(T ))h | h ∈ H} in the following way:

ĥ : Ω1(Z(T ))H → Ω1(Z(T ))H maps Ω1(Z(T ))g to Ω1(Z(T ))gh for all g ∈ H and ĥ ∈ Ĥ. We observe

that the action is transitive. The stabiliser of Ω1(Z(T )) in this action is NH(Ω1(Z(T )))CH(V )/CH(V ).

As NH(Ω1(Z(T ))) = H ∩M by (II) and H ∩M is a maximal subgroup of H by (I), we deduce that the

action is also primitive (see for example II 1.4 of [16]). Since H is soluble, Ĥ has an abelian minimal

normal subgroup N̂ . Then we apply Satz II 3.2 in [16] to obtain all the assertions. �

The group N̂ from (IV) is a q-group for some odd prime q, because O2(Ĥ) = 1 (see before (IV)).

Moreover N̂ ∩ ̂(M ∩H) = 1, so we deduce that N̂ � ̂(M ∩H) and then q 6= 3 by (I). Let N ≤ H be a

pre-image of N̂ such that N is a q-group for some odd prime q ≥ 5. We investigate the natural action

of Ĥ on V . Let 1 6= V0 be a subgroup of [V, N̂ ] such that Ĥ acts irreducibly on V0, and let N̂1,..., N̂n

be the maximal subgroups of N̂ . By (2.1) of [4] we see that V0 = V1 × ....× Vn, where Vi = CV0
(N̂i) for

all i ∈ {1, ..., n}.
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We let O1,...,Om be the orbits of {V1, ..., Vn} under T and set Wi = ×
Vj∈Oi

Vj for all i ∈ {1, ...,m}. Then

V0 = W1 × ...×Wm and, for all j ∈ {1, ...,m}, the 2-group Wj is invariant under T and N̂ .

(V) m = 1 and n is a power of 2.

Proof. For every j ∈ {1, ...,m} there is some vj ∈ CWj
(T )#, since T and Wj are both 2-groups. We see

that CWj (T ) ≤ CV (T ) ≤ CT (T ) = Z(T ) and, as V is elementary abelian, it follows that vj ∈ Ω1(Z(T )).

The group Ω1(Z(T )) has at most three involutions by (II), and WiWk ∩Wj = 1 for all i, k ∈ {1, ...,m}
such that i 6= j 6= k. This implies that m ≤ 2.

Assume for a contradiction that m = 2. Then, as x normalises T and V , we deduce that x stabilises

the set {W1,W2}. This means that W1 and W2 are x-invariant. Thus W1 and W2 are invariant under

〈x̂, T̂ , N̂〉 = Ĥ. This is a contradiction, because Ĥ acts irreducibly on V0. Consequently m = 1 and the

2-group T acts transitively on O1 = {V1, ..., Vn}. This shows that n is a power of 2. �

Now x̂ acts on the set of maximal subgroups of N̂ , so it also acts on {V1, ..., Vn}. We recall that n is

a power of 2, which means that 3 - n. Thus there is some i ∈ {1, ..., n} such that x̂ leaves Vi invariant.

Without loss we may suppose that V1 is x̂-invariant and we set S1 := NT (V1). Then we have that

n = |V T
1 | = |T : S1|.

(VI) |CV1
(S1)| ≥ 8.

Proof. The group N̂1 acts trivially on V1 and is a 〈x̂〉Ŝ1-invariant subgroup of N̂ . As 〈x̂〉Ŝ1 acts coprimely

on N̂ , we may apply Maschke’s Theorem (8.4.6 of [17]). It provides an 〈x̂〉Ŝ1-invariant complement K̂

of N̂1 in N̂ .

Next we apply Hilfssatz II 3.11 of [16] to V1 and K̂〈x̂〉Ŝ1 =: Ĥ1. The group K̂ is an abelian normal

subgroup of Ĥ1 and we may decompose V1 into the direct product of s subgroups, s ∈ N, such that

they are K̂-isomorphic K̂-modules. Let l ∈ N be such that |V1| = 2l and let r := l
s . Then the Hilfssatz

(from [16], see above) yields that Ĥ1/CĤ1
(V1) is isomorphic to a subgroup of semi-linear mappings of

an s-dimensional vector space over a field with 2r elements. The elements of CĤ1
(K̂)/CĤ1

(V1) are those

that induce linear mappings. In particular CT̂1
(K̂) centralises a 1-dimensional subspace V ∗1 , which is a

subgroup of order 2r of V1. Moreover V ∗1 is Ŝ1〈x̂〉-invariant. This group induces field automorphisms on

V ∗1 . Thus we have that |CV1
(S1)| ≥ |CV ∗1

(Ŝ1)| ≥ 2o(x) = 23. �

From (VI) we obtain elements v1, v2, v3 ∈ CV1
(S1) such that |〈v1, v2, v3〉| ≥ 8. Let S := {s1, ..., sn} be

a set of coset representatives of T/S1. We may choose S such that V sk
1 = Vk for all k ∈ {1, ..., n} and

such that s1 = 1. Then we see for all k ∈ {1, ..., n} and j ∈ {1, 2, 3} that vskj ∈ Vk.

For all j ∈ {1, 2, 3} we define wj :=
∏n

k=1 v
sk
j ∈ V . Then the projection of 〈w1, w2, w3〉 on V1 is equal

to 〈v1, v2, v3〉. In particular 〈w1, w2, w3〉 has order at least 8. Moreover, if t ∈ T , then we calculate

for all j ∈ {1, 2, 3} that wt
j = (

∏n
k=1 v

sk
j )t =

∏n
k=1 v

skt
j . The set S0 := {s1t, ..., snt} is also a set of

coset representatives of T/S1. If S1skt = S1sl for some k, l ∈ {1, ..., n}, then we obtain some t1 ∈
S1 ⊆ CH(vj) such that skt = t1sl and so vsktj = vt1slj = vslj . This shows that wt

j =
∏n

k=1 v
skt
j =∏n

l=1 v
sl
j = wj . Altogether 〈w1, w2, w3〉 is centralised by T . Now we obtain our final contradiction

that 8 ≤ |〈w1, w2, w3〉| ≤ |CV (T )| ≤ |Ω1(Z(T ))| ≤ |B| ≤ 4. �

10. The proof of Theorem A

Let us recall first what the aim is:

Theorem A.
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Let G be a finite group and let x ∈ G be an isolated element of order 3 such that CG(x) is soluble.

Suppose further that r3(G) ≥ 3 and that the centraliser of every involution in every section of G is

soluble. If the Z∗3 -Theorem holds in all sections of G of 3-rank 2, then x ∈ Z∗3(G).

Proof. Assume for a contradiction that the theorem is false and let G be a minimal counterexample.

Then x ∈ G has order 3 and is isolated in G, but x /∈ Z∗3(G). We show that G satisfies Hypothesis 4.1.

Let x ∈ H � G. Then Lemma 3.4 (a) implies that x is an isolated element of order 3 of H. If r3(H) ≤ 2,

then Lemma 3.5 or our hypothesis gives that x ∈ Z∗3(H). If r3(H) ≥ 3, then CH(x) is soluble, because

CG(x) is soluble. In addition the centraliser of every involution in every section of H is soluble, because

a section of H is also a section of G. Together the minimal choice of G implies that x ∈ Z∗3(H).

Suppose now that 1 6= N E G. Then Lemma 3.4 (d) implies that Nx is an isolated element of order

3 in G/N . Thus again Lemma 3.5 or our hypothesis gives that Nx ∈ Z∗3(G/N) if r3(G/N) ≤ 2. If

r3(G/N) ≥ 3, then let D be the full pre-image of CG/N (Nx) in G. Then a Frattini argument shows

that D = N〈x〉 · ND(R) = N · ND(R) for some Sylow 3-subgroup R of N〈x〉 containing x. From

Lemma 3.4 (b) we moreover see that NG(R) ≤ CG(x) and so D = N · CD(x). This implies that

CG/N (Nx) = D/N ∼= CD(x)/CN (x) is soluble. In addition the centraliser of every involution in every

section of G/N is soluble, because every section of G/N is isomorphic to a section of G. Thus the

minimal choice of G implies that Nx ∈ Z∗3(G/N).

It follows that Hypothesis 4.1 is satisfied for p = 3 and hence Hypothesis 5.1 holds. Moreover our

additional hypotheses guarantee that Hypothesis 6.1 and Hypothesis 7.2 hold. In conclusion we see

from Lemma 6.3 and Lemma 6.4 (c) that we may suppose that Hypothesis 8.2 holds. By Corollary 8.14,

the group T from Hypothesis 8.2 is a Sylow 2-subgroup of G, and then Lemma 9.6 implies that (*) of

Satz 3 of [21] is true. Now this theorem forces G to be isomorphic to PSL3(3), to PSL2(r) for some

prime power r, or to PSU3(q) or Sz(q) for some power q of 2. In Theorem 4.4 we have seen that this is

impossible. �

Concluding remarks

The solubility hypotheses can be relaxed in many cases, unfortunately at the price of much more

complexity and technical arguments. On the other hand, it might be replaced by a stronger hypothesis

for sections of a minimal counterexample in future work. At the moment we believe that, for more

substantial steps towards a general Z∗p-Theorem, it will be necessary to invoke some kind of hypothesis

relying on the full Classification of Finite Simple Groups. We have stated and proved many general

statements at the beginning of this article that we hope will be useful to anyone attempting to attack

the Z∗p-Theorem in more generality. In the meantime we aim for progress by extending and refining

existing methods.
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